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ABSTRACT

A mechanism that encounters a certain changes in its topological structure during operation is
called a mechanism with variable topologies (MVT). This paper is developed for the structural
and motion state representations and identifications of MVTs. For representing the topological
structures of MVTs, a set of methods including graph and matrix representations is proposed.
For representing the motion state characteristics of MVTs, the idea of finite-state machines is
employed via the state tables and state graphs. And, two new concepts, the topological
homomorphism and motion homomorphism, are proposed for the identifications of structural and
motion state characteristics of MVTs. The results of this work provide a logical foundation for
the topological analysis and synthesis of mechanisms with variable topologies.

Keywords: mechanisms with variable topologies, stmctural representations, motion state
representations, topological homomorphism, motion homomorphism

REPRÉSE~TATIONS ET DÉTERMIN~TIQNS DES CARACTÉRISTIQUES
LlliES A LA STRUCTURE ET A L'ETAT DE MOUVEMENT

DE MÉCANISMES À TOPOLOGlliS VARIABLES
RÉsuMÉ

Un mécanisme dont la structure topologique subit certains changement durant une opération est
appelé un mécanisme à topologies variables (MVT). Cet article met en valeur les représentations
et les déterminations liées à la structure et à l'état de mouvement des MVT. Pour représenter les
structures topologiques des MVT, une série de méthodes, y compris les représentations
graphiques et matricielles, est proposée. Pour représenter les caractéristiques liées à l'état de
mouvement, l'idée de machines d'états finis est employée par l'entremise de tables et de
graphiques d'état. Par ailleurs, deux nouveaux concepts sont proposés, l'homomorphisme
topologique et l'homomorphisme de mouvement, aux fins de déterminations des caractéristiques
liées à la structure et à l'état de mouvement des MVT. Les résultats de ce travail fournissent une
base logique pour l'analyse et la synthèse topologiques de mécanismes à topologies variables.

Mots-clés: mécanismes à topologies variables, représentations liées à la structure,
représentations liées à l'état de mouvement, homomorphisme topologique et homomorphisme de
mouvement.
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1. INTRODUCTION

Mechanisms are graceful arts. Based on the ingenious, inspirational, and/or experienced
thinking, mechanisms are designated to fulfill human being's requirements around daily Iife.
For certain applications, mechanisms are elegantly designated such that their topological
structures are changed during operation, for example, legged walking machines, mechanical
push-button stopper locks, and metamorphic mechanisms [1,2]. Such mechanisms, which have
multiple topological structures over the operation, are so-called the mechanisms with variable
topologies (MVTs). The MVTs achieve complicated tasks with refined solving techniques.
Their metamorphic structures also lead the studies relevant to the structural characteristics of
mechanisms into an unexplored territory.

Prior to the tasks of topological synthesis and analysis, the structural representations of
mechanisms are always the first problem to engineers. Since the late l870s, many noticeable
methods have been proposed, such as symbolic, graph, and matrix representations [3-10], for
representing the topological structures of mechanisms with single topology. However, these
methods are not quite feasible for MVTs because the MVTs own different topological structures
respectively in different topology states. For the purpose of describing MVTs in a compact
form, Yan and Liu [11,12] pioneered to present a topological representation for MVTs based on
mechanism topology matrix [13] and graph representation by using a concept namely the joint
code. By means of this representation, the topological structures of MVTs can be represented in
terms of topologically changeable revolute, prismatic, and cam joints. However, this
representation is unusable for the other MVTs which contain kinematic pairs other than the
present three kinds. And, for convenience of computer programming, a mathematically
considerable representation is indeed needed. Moreover. after the mechanism representation, it
is worth to pay attentions on the topological identifications of MVTs.

On the other hand, since the MVT is changeable with its topologies, the relationships between
the input scheme and topology states become an interesting topic for the motion planning of
changing topology. This particular property also constitutes the great distinguished
characteristics of MVTs compared to the general mechanisms with single topology. For
addressing this charming property. Yan and Liu [14] adopted the concept of finite-state machines
to represent the transitions between topology states under the defined input scheme. Although
the problem of representing topology transformation is solved, the transformation characteristics
are, however, not discussed via their study.

Therefore, this paper is contributed to the structural and motion state representations of MVTs
accompanying with the identifications of their derived characteristics. A set of structural
representations for general MVTs is provided at first. And, the concept of topological
homomorphism is introduced to identify the complexity of topological structures of MVTs.
Then, the motion state representations of MVTs are provided. Accordingly. the motion state
characteristics of MVTs are identified via the concept of motion homomorphism. Based on this
proposed approach, it is believed that the representations and identifications of structural and
motion state characteristics of MVTs can be weil completed.
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2. MECHANISMS WITH VARIABLE TOPOLOGIES

As denoted by F. Reuleaux [3], a mechanism is ua combination of resistant bodies sa arranged
that by their means the mechanical force of nature can be compelled to do work accompanied by
certain determinate motion." The types and numbers of snch resistant bodies (mechanical
members) and joints as weil as the incidences between them characterize the topological
structure of the mechanism. A mechanism which encounters a certain changes in its
topological structure during operation is called a mechanism with variable topologies (MVT).
Generally, the topological variation of MVTs is achieved by the topological variation of
kinematic joints. In effect, the topological representation of MVTs can be properly developed
based on the topological representation ofkinematic joints with variable topologies [15].

For example, a Geneva mechanism with variable topologies is given in Fig. 1. The purpose
of this mechanism is ta convert the continuons rotation into the intermittent rotation. This
mechanism comprises of a crank (C,) with a proximal pin, a slider (SI) with one V-like side, a

4-s10t wheel (Wh) with a proximal rectangular black, and a frame ( F, ). On the front part of the

mechanism, the crank is driven to rotate clockwise and guides the wheel exhibiting the
intermittent rotation. On the back-distal end of the crank, a trapezoidallink shape is designated
ta guide the slider rising or retuming. At the distal end of the wheel, a rectangular black is
designated for matching with the slider. On the back part of the mechanism, the slider is
equipped with two tensile springs to be imposed forces. A V-like link shape of slider is
specified to engage the rectangular block such that the wheel can be retained on a desired
position. Since the purpose of the springs is ta provide an auxiliary input force, they are
disregarded in this figure. Accordingly, the process of varying topology of this mechanism is
expressed as the following four cyclic stages:

Stage A
In the front part of the mechanism, the pin attached ta the end of crank is not engaged into the

wheel yet. SA there is no physical contact between the crank and the wheel. In the back part,
the slider belongs ta the lowest location and it is guided in a dwell motion by the crank end.
Since the slider is staying at the lowest location, the wheel is clamped by the slider by means of
the conjugated rectangular and V-like link shapes.

StageE
In the front part of the mechanism, the pin of the crank is still unengaged into the wheel. In

the back part, the slider is lifted with a rising motion by the trapezoidal crank end. Since the
slider has not reached the highest location, the wheel retains being clamped.

Stage C
In the front part of the mechanism, the pin of the crank is engaged into the wheel. At the

same time, the slider reaches the highest location and keeps a dwell motion sa that the wheel is
not clamped anymore. Since the wheel is free, it is guided ta rotate counterclockwise by the pin
of the crank.
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(a) Stage A

(b) Stage B

(c) Stage C

(d) Stage D

Figure 1 A four-bar Geneva mechanism

Stage D
In the front part of the mechanism, the pin of the crank is disengaged from the wheel. At the

same time, the slider is pulled down with a retum motion by the spring force. Hence the wheel
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is c1amped again by the slider so that it retums being fixed. Then, stage A will be repeated and
the cyc1ic period A-B-C-D-A goes on successively.

In conclusion to the above illustration, it is obvious that the types of sorne kinematic joints
among this mechanism are changed over the four stages. From which, the topological structure
of such mechanisms is changed.

3. APROCEDURE FOR THE REPRESENTATIONS AND
IDENTIFICATIONS OF MVTS

A procedure for the representations and identifications of structural and motion state
characteristics of MVTs is as shown in Fig. 2. It is organized as the unified graphs,
directionality topology matrices, and hexadecimal topology matrices for structural
representations with topological homomorphism identification. and the state graphs and state
tables for motion state representations with motion homomorphism identification. In what
follows, each step will be explained and the Geneva mechanism shown in Fig. 1 is selected as
the illustrative example.

~----------------------------,
1 1
1 1
1 1
1 1
1 1
1 1
Il

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
le 1
L ~

r '1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1e 1L______ _ ~

Figure 2 A procedure for the representations and identifications of structural and motion state

characteristics of MVTs
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4. GRAPH REPRESENTATIONS

Based on joint codes and joint sequences [15], the graph representations of MVTs can be
concluded as the graphs and unified graphs. They are introduced as follows.

Joint Codes and Joint Sequences

At each topology stage of MVTs, a kinematic joint is concurrently possessing one topology
structure. This topological structure indicates that what type of kinematic pair the joint has and
what pair orientations the joint characterizes. Here we define such characterization as the joint
code, J;, in which a and /3 respectively represent the type and the corresponding

orientations of the kinematic pair embedded in this joint. Table 1 shows the joint codes of
commonly used kinematic pairs with the associated orientations. In addition, two kinematic
pairs namely fixed pair, J,x, and separated pair [11,12], J:, that are frequently appeared in

joints with variable topologies, are introduced into this manner; and here v denotes the arbitrary
orientation. If there is no relative motion between pair elements, a fixed pair is represented for
this contact. Similarly, if there is no physical contact between pair elements, a separated pair is
imaged for this contact. These two pairs are commonly appeared in most MVTs while two
mechanical members are temporarily fasten or separated. Based upon above definitions, ail
frequently appeared kinematic pairs in MVTs are concluded.

During the MVT operation, a kinematic joint can undergo a series variation of types and/or
motion orientations of the kinematic pairs. This variation process can be recorded as a string
composing of joint codes of ail topology states. Such a string is called the joint sequence,
J(a,/3) , and is expressed as;

J(a,/3) = J a ,.", .....".
p,.p, ..·..P. (1)

in which a. and /3. respectively represent the type and the representative orientations of joint
codes of the kinematic pair at the nth topology state. For example, the kinematic pairs of the
joint incident to the wheel and slider in Fig. 1 are fixed, primatic, separated, and primatic ones
step-by-step. Hence its correspondingjoint sequence is J:;~:~'p.

Graphs

Since the topologies of joints can be expressed as the joint codes and joint sequences, the
topological structures of MVTs can be represented in a more abstract forrn called the graph
representations. In MVTs, the topological structure at each topology state has one
corresponding graph for the individual topology. In a graph representation, the vertices denote
links and the edges denote joints of a mechanism. The fixed Iink is denoted by two small
concentric circles. The edge connection between vertices corresponds to the pair connection
between links. To distinguish the topological variation of joint types and orientations, each
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Table 1 Joint codes of commonly used kinematic pairs
Pair (Joint) type Schematic diagram DOF loint code Representative orientations

Revolute

Prismatic

Rolling

Wrapping

Helical

Cylindrical

Cam

Gear

Spherical

Flat

2

2

2

3

3

JP
x

JlY
x

J"x

J Arr JAro
xz • yx

J~,J~

Direction of rotation axis.

Direction of the tnmslalion motion.

Direction of rotation axis. coincident to
the contact line or point.

Direction of rotation axis of the pulley or
sprockct.

Direction of the serew axis.

Direction of rotation axis.

Combination of:
(l) (R.T)": Directions of rotation axis of

the cam and translation of the
follower.

(2) (R.O); Directions of rotalion and
oscillation ax.es of the cam
and the follower.

(3) (T.T): Directions of translation of
the cam and the follower.

(4) (T,O): Directions of translation of the
cam and rotation axis of the
follower.

Combinalion of the directions of rotation
axes of gears.

Defined as v since the spherical motion
can he reprcsentcd by any direction.

Direction of Ihe nannal vccior of the
contact surface.

* The alphabets denoted in the parentheses represent the mOlion types of the cam and the follower. respeclively. And. R
denotes the rotation, Tthe translation. and 0 the oscillation.
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edge is labeled as Œp ' according to ils correspondingjoint code l'ft. For example, the graphs

of the Geneva mechanism shown in Fig. 1 are depicted in Fig. 3. Il clearly shows that although
the four graphs have the same connectivily, the distinct joint codes are labeled to their edges.
Note that because two separated mechanical elements are imaginarily treated as disconnected
"pairing," the separated pair 1~ is considered in the graphs. And, via the virtual connection
of two separated mechanical members, the graph structures of ail topology states are unified.

F'I21
R
X C'F'I21

R
X C, F'0RXC, F'!21RX.C,

X, D A:: X, ~ lA:: Rx ARO A:: X, DA~T, q ~ ,
Wh X, SI Wh Px SI Wh D, SI Wh Px SI

(a) (b) (c) (d)

Figure 3 Graphs of the Geneva mechanism at four topology stages

Unified Graphs

Since the graphs of MVTs at ail topology states are unified, we can incorporate them into a
more compact form called the unified graph. In the unified graph, the vertices and edges as
weIl as their connectivities are identical to that of each individual topology state. But the labels
of edges are replaced by the joint sequences. By this way, the overall topological variation of
MVTs is described by simply one graph. For the graphs of the Geneva mechanism shawn in
Fig. 3, the corresponding unified graph is depicted in Fig. 4.

F,

JX,X.R.X
l',I'.X,\'

JD.D lIo.D jA,u.AIIT.AJlT.AIIT
1'. •.lX,V .u..u.:u..u

Figure 4 unified graph of the Geneva mechanism

5. MATRIX REPRESENTATIONS

Since the graph representations provide simpler graphical drawings of MVTs, the matrix
representations suggest the mathematically considerable manners for indicating their topological

a~ for cam pair, in which t defines the motion types of cam and follower.
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structures. It includes the directionality topology matrices and the hexadecimal top%gy
matrices.

Directionality Topology Matrices

The topological structure of an MVTs is represented by a unified graph and this graph can be
expressed as a matrix. Based on the mechanism topology matrix [13], the directionality
topology matrix (M DT) is developed for representing the topological structures of MVTs. The
directionality topology matrix of an MVT with N links is an N x N matrix. The diagonal
element mil represents the type of mechanical member i, the upper right non-diagonal element

mu represents the joint sequence incident to members i and j, and the lower left non-diagonal

element mj; denotes the label of the joint incident to members j and i. If members i and j are

never adjacent, mil =m li =0 . For the Geneva mechanism shown in Fig. l, its directionality

topology matrix M DT is:

Fr J R•R•R•R 0 J X•X•R•X
.t,X,X,X v,v,x,v

a Cr ]ART.ART.Altt.ART ]D,D.ARO.D

M DT = xx,XX,XX.XX v,v.xx,v

0 b SI J X •P•D•P
v,x.v,x

d e c Wh

(2)

Hexadecimal Topology Matrices

For convenience of computer programming, the joint codes and joint sequences can be
transformed into the numerical numbers such that the directionality topology matrix is
mathematically considerable. Here we employa hexadecimal system to digitize the joint codes
and joint sequences. Table 2 and 3 give the suggested numbers corresponding to the kinematic
types and orientations in joint codes. Accordingly, the symbolic kinematic types and
orientations of the joint sequences can be replaced by the corresponding numbers. For example,
JR.ARa.P•X is transformed into J 2CJ1 •

X,n,y,v 1420

When the digitized joint sequences are obtained, we can adopt them into the directionality
topology matrix. The numbers of a joint sequence are separated as two parts: the upper
(kinematic types) and the lower (kinematic orientations). The upper numbers are put into M DT

in which the corresponding joint sequence locates. The lower numbers are put into M DT to
which the corresponding joint label belongs. And, for the mechanism with n topology states,
the diagonal elements and each zero in M DT are ail replaced by n zeros, respectively. Hence

the resulting matrix, namely the hexadecimal top%gy matrix (M fiT), is obtained. For the
directionality topology matrix given in Eq. (2), its corresponding hexadecimal topology matrix
M fiT is:
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0000 2222 0000 1121

1111 0000 BBBB OOCO
M IIT =

0000 4444 0000 1303
(3)

0010 0040 0101 0000

Table 2 Hexadecimal numbers of kinematic types of joints

Kinematic Correspolldillg Kinematic Correspolldillg
type number type number

D 0 G 8

X S 9

R 2 F A

P 3 ART B

H 4 A Ro C

IV 5 Arr D

0 6 Aro E

C 7

Table 3 Hexadecimal numbers of kinematic orientations of joints

Kinematic Correspolldillg Kinematic Correspolldillg
orientation number orientation Ilumber

v 0 yx 7

x yy 8

Y 2 yz 9

z 3 zx A

xx 4 zy B

-'Y 5 ZZ C

XZ 6

6. TOPOLOGICAL HOMOMORPHI8M

A very familiar problem revealed in the structural analysis of mechanisms is the isomorphism
identification between two kinematic chains or mechanisms. Two kinematic chains or
mechanisms are said to be isomorphic if they have the same topological structures. Similarly, it
is possible for two MVTs with the same topological structures at one or more topology states.
In such situation. these two MVTs are said to be topologieal homomorphie. More precisely. if
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MVT ma have one or more identical topologieal structures to another MVT mb , we said that

ma is topological homomorphic to mb • Furthermore, if there is a sequentially one-to-one

correspondence of topological structures between ma and mb , they are said to be ml/tl/ally

topologieal homomorphie. For example, Figs. 5(a)-(c) show three simplest mechanisms (with
two links and one joint only) and (al)-(cl) are their graph representations. Figure 5(c) has five
topology states whereas Figs. 5(a) and (b) both have only four. By inspecting their joint
sequences, Figs. 5(a)-(c) possess the J'oint topologies with jP.R.P.R, jR.P.R.P, and jR,P',R.P.R,

X,x.x.x X.X,X,X x,x•..\.x,x

respectively. Il is obvious that there exists a sequentially one-to-one correspondence to the joint
codes of Figs. 5(a) and (b), i.e., a cyclic Rx-Px-Rx-Px period. 50 these two mechanisms shown in
Figs. 5(a) and (b) are mutually topological homomorphic. Furthermore, Figs. 5(a) and (b) have
four identical joint codes (mechanism topologies) which are corresponding to the parts of that in
Fig. 5(c). 50 the mechanisms shown in Figs. 5(a) and (b) are topological homomorphie to that
in Fig. 5(c). Note that if 1:\'10 MVTs are mutually topological homomorphie, each of their
topologieal structures at the corresponding topology state is automatieally one-to-one
isomorphic.

(a)

Frame
(b)

(c)

(al) (bl) (cl)

Figure 5 Three topologieal homomorphie mechanisms

Transactions ofthe CSMEIde la SCGU Vol. 30. No. J, 2006 29



The topological homomorphism between two MVTs, Ml and M 2' can be identified
mathematically by using the hexadecimal topology matrices. The procedure is summarized as
follows:

Step 1. Write down their hexadecimal topology matrices, M flT,1 and M IfT.2' respectively.

For example, the hexadecimal topology matrices, M IfT,a' M IfT,b' and M IfT.c' of the

mechanisms shown in Figs, S(a)-(c) are:

[
0000

M -
NT.a - 1111

[
0000

M -
IfT.b - 1111

[
00000

M -
IfT.c - 11111

3232]
0000

2323]
0000

23232]
00000

(4)

(5)

(6)

Step 2. Respectively decompose M flT,1 and M flT,2 as two matrix sequences with Il

sub-matrices, M DNT.I and M DlfT,2' in which Il is the number of topology states. For the Ilth

matrix (M DflLln and M DflT.2n) in M DNT,1 and M DHT,2' the entries mDHT.ln, and mDHL2n,; are

identical to the /lth numbers of mlfT,I,; and m flT•2,' respectively. For example, the matrix

sequences, M DNT,.' M DNT.b' and M DlfT.c' deeomposed from M flT,a' M flLb' and M flLc are:

[
0M -DlfT,a - 1 a~ a~ a~ ~]

a~ a~ ~I~ ~]

(7)

(8)

(9)

Step 3. Compare with ail sub-matrices in M DlfT.! and MDNT,2 one by one. If there are one

or more identical sub-matrices between them, these two mechanisms are topological
homomorphie. If there is a sequentially one-to-one eorrespondence between them, they are
mutually topological homomorphie. Otherwise, they are distinct. For example, through Eqs,
(7)-(9), it is obvious that there exists a sequentially on-to-one eorrespondenee between M DflT,a

and M DHT,b' so their eorresponding mechanisms, Figs. S(a) and (b), are mutually topological

homomorphie. And, M DlfT,a and M DlfT,b have four identical sub-matriees to that in M DlfT,c'
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so the corresponding mechanisms, Figs. 5(a) and (b), are topological homomorphie to that in Fig.
5(c).

When this procedure is applied into the structural identification of MVTs, one should notice
that there may have the permutation problem in the matrix operation. As in the traditional
schemes of isomorphism identification, the isomorphic mechanisms and kinematic chains can be
detected by sorne permutations to the colurnns and rows of the corresponding matrix (such as
link adjacency matrix, etc). Similarly, the identification of topological homomorphism among
MVTs can be undertnken with ail possible link permutations that correspond to permute the
colurnns and rows of the hexadecimal topology matrices. The permutation techniques are
similar to the traditional methods provided by many famous approaches. Here we skip it to
give more space.

7. MOTION STATE REPRESENTATIONS

ln the aforementioned approaches, the representations of topological structures of MVTs are
clearly described. However, another important property, the motion state characteristics of
MVTs, must be addressed for the completeness of representations. An MVT can change ils
topological structures under one or more controllable inputs to come up with the predictable
motion. At each topology state, activating different inputs or controlling by other ways may
lead the mechanism into the next different topological structure. So when ail of the topological
structures of an MVT are described, the relationships between them are needed to be addressed.
To identify these relationships, the concept of finite-state machines is adopted [14]. The
finite-state machines [16,17] are broadly used in network systems with a set of transformations
of a set of states. It not only describes the transformations between these states, but also
recognizes the similarity of different systems.

Finite-State Machines

Afinite-state machine is an algebra structure {S, J, y, M, 15}, where S, J, and Y are finite sets of
states, inputs, and outputs, respectively, M is a mapping from S x J into S, and 15 is a mapping
from S into Y.

Mapping the algebra structure of finite-state machines into MVTs, S, M, and Y are respectively
corresponding to the state set, transformation, and the next state set when the input sequence J
acts on the state set. The state set S selects ail possible topology states of MVTs. The input
sequence J informs the operation strategy of MVTs. The transformation M defines the rules of
topology variation of MVTs. And the next state set Y concludes the correspondence between
topology states and input variables. Since in MVTs we in general concem only with the
relationships between state set and input sequence as weil as output, the mapping function 15 is
neglected in this representation.

State Graphs and State Tables

The representations of finite-state machines include the state graph and state table. In the
state graph, there is one node for each state in M and one edge leaving each node for each input
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symbol in J. The paths on this graph show state changes by the machine for ail input sequences.
In the state table, the basic roles of state transformations in M are constructed. The abscissa
labels the input variables, the longitudinal axis labels total states, and the intersection denotes the
output subject to the present state and input variable. For example, Fig. 6 shows the state graph
and state table of the Geneva mechanism depicted in Fig. 1 in which "+" and "-" denote the
clockwise and counterclockwise rotations of the crank, respectively. By inspection of the state
graph and state table, it reveals that the Geneva mechanism contains four topology states and one
manipulating input link with two rotating directions. And, in general, the input sequence J is
suitable for {C;, C;, C;, C;} or {C,-, C;,C;,C;} for a continuous rotation.

C+ C; C'• ,
SA SB Sc S'v

C,
C,

C+,

Next slate M(s,il
Presenl slale s

i = C+ i= c;,
SA SB So

So Sc SA

Sc So SB

So SA Sc

Figure 6 State graph and state table of the Geneva mechanism

The finite-state machine representations are especially powerful for the MVTs with multiple
inputs. For example, Fig. 7 [18] is an aircraft horizontal tail control mechanism with four
possible topological structures. It has fourteen links and seventeen joints (including one
multiple revolute joint and one slider joint). Member 2 is input-I from the control stick,
member 12 is input-II from the control flap, the actuator (members 7 and 14) is input-III for the
purpose of stability augmentation, and member 8 is the output link. This mechanism can be
manipulated by one of the input combinations {I,Il,III}, {l,Il}, {l,III}, and {I}. Each input
scheme produces distinct topological structures as follows:

(1) Input {I,Il,III}:
In this situation, ail links and joints are active. So this mechanism is containing fourteen
links and seventeen joints (including the multiple revolute joint g). It therefore has three
degrees of freedom.
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e

Figure 7 An aircraft horizontal tail control mechanism with three inputs ll8)

(2) Input {!,II):
In this situation, the actuator is inactive. Hence joint k becomes a fixed pair and members 7
and 14 constitute a fixed-Iength link. So this mechanism can be treated as containing
thirteen links and sixteen joints (including the multiple revolute joint g). It therefore has
two degrees of freedom.

(3) Input {l,III):
In this situation, the control flap is inactive. Since the control flap does not make any
rotation, members 9, 10, 11, 12, and 13 will be stationary and form as a structure. Besides,
joint g will become a fixed pivot. So this mechanism can be treated as containing nine links
and eleven joints (excluding the multiple revolute joint g). It therefore has two degrees of
freedom.

(4) Input {I):
In the situation, this mechanism can be treated as containing eight links and ten joints
(excluding the multiple revolute joint g). It therefore has one degree of freedom.

For identifying its motion state characteristics, the corresponding state graph and state table are
established in Fig. 8. By inspecting this figure, the manipulation of this mechanism is readily
and clearly obtained.
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NeXI slale M(s.i)
Presenl slale s

; = 11.2,3 ; = 1,,2 ;=/1,3 ; =1,

sI11I ,2,3 S2 S3 S4

S2111,2 SI S3 S4

S3/I l ,2 SI S2 S4

S4/ I , SI S2 S3

Figure 8 State graph and state table of the aircraft horizontal tai! control mechanism

8. MOTION HOMOMORPHI8M

In addition to the application of state graphs and state tables. there are several interesting
properties of finite-state machines that can be utilized to MVTs, Before this exploration. the
following definitions should be addressed:

Definition 1 A machine MI is said to be a homomorphie image of a machine M 2 if there
exist two surjections such that

'P, : J --+ /1 •where J c /2

and

and such that

'P2 :T --+ SI • where T ç;; S2

for ail j in J and t in T. We say that the functions 'P, and 'P2 forro a machine

homomorphism.
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Following example iIIustrates the machine homomorphism.

Example 1 Suppose MA and M B are the machines whose state tables are as follows:

MA Next state M A (s, i) M B Next state M B (s,i)

Present state s i=O i = 1 i = 2 Present state s i :a i=r

a c d d a y a

b b c c p p y

c a a d y a a

d c d a

The surjective mapping functions, rpl and rp" are shown below, from SAtO Sn and / A to

/B:

'Pz
a__a

~~p
d7-r

'P,

°72CJ

1 r
2

We can verify that for ail j in J and t in T, where J ç; / A and T ç; SA:

For example,

({J,(M A (a, 0» =((J2(C) =r=M B(a,O") =M B(rp,(a),rpl (0»

({J2 (M A (a, 1» =({J2 (d) =a =M B(a, r) =M n«({J2 (a), ({JI (1»

(10)

(11)

(12)

and so on. Il follows that (rpl' rp2) :MA -+ M B is a machine homomorphism; that is M B is a

homomorphie image of MA'

Definition 2 Based upon Def. l, a machine M2 can simalate MI if and only if the

surjections rpl and rp2 constitute a machine homomorphism.

Hence in Example 1, we see that MA simulates M B' It implies that MA can do the same

function as that in M B •

The concept of machine homomorphism can be mapped into the MVTs manipulation. If the
manipulation of an MVT ma can imitate the overall manipulation of another MVT mb , we say

that ma can simulate mb , and mb is motion homomorphie to ma' Furthermore, if ma can
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simulate nib and vice versa, we say that ma and mb are ml/tually motiol! homomorphie.

Two MVTs would have similar operation strategies if they are motion homomorphie; two MVTs
will have strictly identical operation strategies if they are mutually motion homomorphie.

The above definitions are illustrated by Figs. 9 and 10. Figure 9 shows a defined mechanism
that is manipulated to move block B to the slot on the lower middle. During this manipulation,
five topology states based on five input variables are identified as indicated in the state table and
state graph. And the process of varying topology forms a machine namely MA' Let us now

define two surjections ({JI and ({J2 for the input sequence and state set, respectively:

According to these two surjections, we can obtain Table 4 immediately by substituting the
mapping elements into MA' BY inspecting Table 4, it reveals that there are several trivial
states and input symbols. Thus a more compact form of state table can be rearranged as that in
Fig. 10. The resulting state table concludes a machine M B with four states and three input
variables. And its state graph a1so can be obtained in Fig. JO. Furthermore, after a deliberated
conceiving, a possible solution corresponding to the mechanism configuration is received. The
resulted mechanism varies its topology with three inputs. And it performs the same function of
that in Fig. 9 but with fewer operation steps.

Table 4 State table of surjective mappings of Fig. 9

MA Nextstate MA(\l'2(s)·\l'I(i))

Present state S i =L!;. i =L!;. i =L!;. i =L~ i =Ls
Sa Sb

Sb Sb

Sb Sb Sc

Sc sd

Sd
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State table

M ,\ Next state MA (s,l)

Present state s i =L, 1=L'ighl i =I!;ft i =L. 1= Ls

State graph

Figure 9 An MVT with five machine states and five input variables
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State table

Ms Nextstate Ms(s.l)

Present state s 1=L2 1=L~ 1=r.;

State graph

L'4

, L5.,.;-- ­
1

L'5

Figure 10 An MVT with four machine states and three input variables
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Among the above operation, we produce M B' that is a homomorphie image of MA' from

MA such that it can be simulated by MA' AIso, the produced mechanism corresponding to

M B can be simulated by that corresponding to MA' Briefly speaking, the mechanism shown
in Fig. 9 can simulate the other one shown in Fig. ID. So the mechanism in Fig. 10 is motion
homomorphie to that in Fig. 9. Since the homomorphie image M B can be simulated by MA
for ail of its own states, an important property for the motion homomorphism and simulation of
MVTs is revealed. When an MVT M 2 has a homomorphie image Ml' it major operations

can be achieved by MI associated with a simpler manipulation; oppositely, ail of the

operations of Ml can be simulated by M 2 associated with an elaborate manipulation. The
homomorphism and simulation properties of MVTs can reduce and encourage the complexity of
their topology variation schemes in an opposite way.

9. CONCLUSIONS

This paper introduces the structural and motion state representations and identifications for the
mechanisms with variable topologies. For the structural representations of MVTs, the unified
graphs, directionality topology matrices, and hexadecimal topology matrices are suggested.
Accordingly, the concept of topological homomorphism is introduced to identify the structural
characteristics of MVTs. For the motion state representations of MVTs, the concept of
finite-state machines is adopted by the uses of state tables and state graphs. Furthermore, the
concept of motion homomorphism is utilized to identify the motion state characteristics of MVTs.
The overall approach that organized here provides a logical foundation for the structural and
motion state representations and identifications of MVTs. Future works to the structural and
motion analysis and synthesis of MVTs can therefore be expected based on the contributions of
this work.
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