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ABSTRACT
The Lagrangian approach to the development of dynamics equations for a multi-body

system, constrained or otherwise, requires solving the forWard kinematics of the system at
velocity level in order to derive the kinetic energy of the system. The kinetic-energy expression
should then be differentiated multiple times to derive the equations of motion of the system.
Among these differentiations, the partial derivative of kinetic energy with respect to the system
generalized coordinates is specially cumbersome. In this paper, we will derive this partial
derivative using a novel kinematic relation for the partial derivative of angular velocity with
respect to the system generalized coordinates. It will be shown that, as a result of the use of this
relation, the equations of motion of the system are directly derived in the form of Kane's
equations.

Keywords: dynamics modelling, Kane's equations, multi-body system, and virtual work.

LA DERIVATION LAGRANGIENNE DES EQUATIONS DE KANE

RESUME
L'approche lagrangienne pour Ie developpement des equations de dynamique pour un

systeme multi-corps, contraint ou pas, exige la resolution de la cinematique directe du systeme
au niveau des vitesses afin de determiner l'energie cinetique du systeme. L'expression de
I'energie cinetique doit alors etre derivee plusieurs fois afin de determiner les equations du
mouvement du systeme. Parmi ces derivations, la derivee partielle de I'energie cintStique par
apport aux coordonnees generalisees du systeme est particulierement complexe. Dans cet article,
nous deriverons cette derivee partielle en utilisant une relation cinematique novatrice pour la
derivee partielle de la vitesse angulaire par rapport aux coordonnees generalisees du systeme.
Nous montrerons que, en raison de l'utilisation de cette relation, les equations du mouvement du
sysreme sont directement derivees sous forme d'equations de Kane.

Mots cles: modelisation dynamique, equations de Kane, systeme multi-corps, et travail virtuel.
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1 INTRODUCTION

Motivated by the need for the dynamics analysis of complex systems, many researchers have tried to develop the
equations of motion of multi-body systems in novel forms more suitable for numerical computations, symbolic ma
nipulations, or both. The Newton-Euler formalism, despite its strength, seemed unattractive because it requires the
computation of all constraint forces and moments whereas energy-based methods, e.g., the Euler-Lagrange, disregard
the constraint forces and moments based on the assumption that these forces and moments do not contribute to the
total work performed. The Euler-Lagrange method, however, has its own issue that makes its application cumbersome.
The issue is that it involves differentiating the kinetic and potential energies of the entire multi-body system with re
spect to the system generalized coordinates and velocities. These differentiations combined with the nonlinear nature
of the relation between the twist of each body in the system to the system generalized coordinates render the "raw"
application of the method to multi-body systems impractical. For instance, for a threeclink planar mechanism with
only three degrees of freedom, one has to write pages of equations to be able to properly compute the kinetic energy
and differentiate it as needed [1].

In this paper, to simplify the differentiations of the system kinetic energy, we derive closed-form expressions for
the partial derivatives of the translational and angular velocities of a body with respect to the system generalized
coordinates and velocities. Among these relations, it is the partial derivative of the angular velocity with respect to
the generalized coordinates that is new. This relation was derived a few years ago [2] for the purpose of obtaining the
linearized kinematics of structurally flexible serial manipulators. The relation had the condition that the generalized
coordinates of the system be independent. Moreover, the application of that relation to the derivation of dynamics
equations was not discussed. In this paper, we use the above-mentioned expressions to differentiate.the kinetic energy
of an unconstrained system. Furthermore, we will extend that relation to the case of constrained systems and use the
result to derive the equations of motion of constrained multi-body systems.

It will be demonstrated that, using the above-mentioned closed-form relations, the Euler-Lagrange formalism pro
duces the equations of motion in the form of Kane's equations. Among all attempts to develop more efficient formu
lations for the equations of motion of multi-body systems, Kane's [3; 4] has proven to be probably, by far, the most
controversial. The controversy, however, is not on the technical merits or the accuracy of Kane's final results; rather, it
mostly concerns the originality of the equations, and the way they are obtained. Kane's equations have been compared
with the earlier results of Gibbs and Appell [5], Jourdain [6] and Maggi [7]. For a brief summary of such discussions,
see [8].

A fundamental issue is that Kane considers the concept of virtual displacement "objectionable" [9]. As such,
avoiding D'Alembert's Principle, he starts from Newton's Second Law. Kane's equations have also been derived
from "the work-energy form of Newton's Second Law" [10]. However, to derive the equations from the Second
Law, whether in its original or in its work-energy form, one must eliminate the system constraint forces as they do not
appear in Kane's equations. This is exactly where D'Alembert's Principle comes into the picture, as it is-in general
the virtual work of constraint forces which vanishes. (In fact, D'Alembert's Principle acts as a "physical postulate"
independent from the Newton-Euler equations [1 I].) Here, basing our derivation on D'ALembert's principle of virtual
work, we derive Kane's equations as a direct and natural consequence of the application of the Lagrange equations to
multi-body systems.

In what follows, Kane's equations are very briefly introduced in Section 2. In Section 3, we will discuss the
principle of virtual work and show how this principle can be used to derive the Lagrange equations for constrained
and unconstrained multi-body systems. Section 4 is dedicated to the derivation of equations of motion for systems
with tree structures. Section 5 discusses the same for constrained systems, the paper concluding with some remarks in
Section 6.

2 KANE'S EQUATIONS

For a system of n rigid bodies with r independent quasi-velocities Uj, Kane's equations are written as [4]

for j = 1, ... ,r (1)
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In the above set of equations, Fj and Fl are the impressed and the inertial generalized forces, respectively. They are
given by

(2)

(3)

In the above, Vi and Wi are the mass-centre translational velocity and the angular velocity of the ith body; Ii and ni

represent the resultants of the impressed forces and moments acting on the body; and mi and Ii denote the body mass
and moment of inertia.

3 THE PRINCIPLE OF VIRTUAL WORK

The D'Alembert principle of virtual work in Lagrange's form [12; 11], which has also been called the Lagrange·
Principle [11], can be reformulated to obtain

(4)

where q and q are the vectors of generalized coordinates and velocities, respectively; 8q, as usual, represents the
virtual change in the generalized coordinates; and T denotes the system kinetic energy. The vector I of total impressed
generalized forces in the above equation represents the active forces applied on the multi-body system. This force can
be computed from the definition of virtual work:

(5)

where Ii and ni are the resultant impressed force and moment applied on the ith body, respectively; Vi and Wi are the
mass-centre translational velocity and the angular velocity of the ith body of the system.

When q is an n-dimensional vector of independent generalized coordinates of the system, all entries of 8q, i.e., the
virtual changes in the coordinates, will be independent and arbitrary. The Lagrange equation is then derived in vector
form as

d 8T aT
¢ == d/ aq) - aq - I = 0

and the vector of generalized forces can be obtained as

(6)

(7)

However, if the generalized coordinates are not independent, the virtual changes cannot be imposed independent of
each other, and the equations of motion will not be as simple.

In the absolute majority of applications, the constraints can be written in the Pfaffian differential form as

A(q, t) dq = b(q, t) dt (8)

where A is assumed to be an r x n-dimensional, full-rank matrix. Equivalently, the above constraint equation can be
written as

A(q, t) q= b(q, t)

Any vector that, when replacing q, satisfies the above equation is termed an admissible velocity.

(9)
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Virtual displacements have two properties: They are imposed instantly, i.e., in frozen time, and they must comply
with the system constraints. The former property is by definition, and the latter is due to the principle [8]. Conse
quently, the virtual changes of the generalized coordinates should satisfy eq. (8) in the form below:

A(q,t) oq = 0 (10)

Geometrically, this equation means that the virtual change must lie in the null-space of the matrix A, i.e., oq must be
orthogonal to all rows of A. Hence, the dimension of the subspace within which oq can arbitrarily vary is m £. n - r.
On the other hand, according to the Lagrange Principle (4), oq must also be orthogonal to the n-dimensional vector
cjJ. This simply means that cjJ has to lie in the subspace spanned by the rows of A, namely, its row space:

(11)

Because the system generalized coordinates and velocities are constrained by r independent constraint equations,
only m of the generalized velocities will be independent. As such, we should be able to find an m-dimensional vector
u-with independent entries-which can produce all admissible velocities Ii through the n x m-dimensional, full-rank
matrix B(q, t) and the n-dimensional vector d(q, t) through

8'
Ii = B(q, t) u + d(q, t) with B(q, t) £. 8: (12)

The entries of u mayor may not be time-derivatives themselves; those entries that belong to the latter category are
called quasi-velocities, while the others are simply generalized velocities. In Kane's method terminology, the rows of
B are called partial velocities, and the entries of u are known as generalized speeds l [4].

Since qhas to be admissible, it must satisfy the constraint equation (9). Therefore, we should have

A(q, t) B(q, t) u + A(q, t) d(q, t) - b(q, t) = 0

for any given u. Consequently, we obtain

A(q,t)B(q,t) = D rxm and A(q,t)d(q,t) = b(q,t) (13)

The first equation shows that the range space of B is orthogonal to all vectors in the row space of A. Equivalently,
since BTAT also vanishes, one can say that the row space of A is a subset of the null-s~T,namely,

(14)

From eqs. (11) and (14), we can conclude that

cjJ E N(BT
) or

Hence, if we can find a complete set of independent generalized velocities, quasi-velocities, or both, such as the entries
of u, then the Lagrange equations for the system can be written as

(81i )T cjJ == (8q)T[!:..(8~) _ 8T _ f] = 0
8u 8u dt 8q 8q

The above m equations are independent from each other and fully express the dynamics of the system.
Similarly, we can derive the relation below for the generalized forces:

(15)

(16)

It should be noted that, when the generalized coordinates are dependent, the generalized force f cannot be derived
uniquely from the definition of the virtual work, eq. (5). However, that does not pose a problem because, in fact, those
are the components of f along the columns of B which are needed for eq. (15), and those can one compute uniquely
from eq. (16).

IThe terms quasi-coordinates and quasi-velocities, however, go back to the beginning of the 20th century [13].
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4 DYNAMICS OF MULTI-BODIES WITH A TREE STRUCTURE

In this case, one can readily choose the joint values as a set of independent generalized coordinates. Therefore, the
Lagrange equation (6) can be written as

(17)

where the entries of q are the independent generalized coordinates of the system. In the above equation, the generalized
force has been divided into conservative and nonconservative parts. f nc denotes the nonconservative part while its
conservative counterpart is represented by the scalar function V of the system potential energy.

4.1 The kinetic energy

The kinetic energy of the system of n rigid-bodies can be computed as

1 n 1 n
T= - "'w'!'Lw·+ - "'v'!'m·v·

2L.... • • • 2L....· ••
i=l i=l

(18)

where Wi and Ii respectively are the angular velocity and the centroidal moment of inertia of the body, both expressed
in the ith body frame; Vi and mi are the velocity of the body ml).ss-centre and the mass of the body, respectively. The
mass-centre velocity is expressed in the inertial frame.

The angular and the translational velocities are, in general, nonlinear functions of the generalized coordinates of the
system, q, and linear functions of the generalized velocities, q. These functional relations can be established through
the forward kinematics of the system. They will be of the form

Wi= ~(JWiq)=Jwiij+jwiq
. d .

Vi = dt(JVi q) = Jvi ij + J vi q

(19)

(20)

where, for simiplicity, we have assumed that the system is sceleronomic, and J wi and J vi are defined as'

and (21)

Traditionally, at this stage, the kinetic-energy expression is expanded in terms of q and q by using eqs. (19) and·
(20), and the expression is reformulated as2

Thereafter, one has to work with the generalized inertia matrix M of the system, and differentiate the entries of that
matrix with respect to q. Here, however, we will try to continue with the kinetic energy as expressed in eq. (18). To
that end, we recall the following theorem [2]. A new proof of the theorem is produced in Appendix A.

Theorem 1. The partial derivative of the angular velocity w ofa rigid body in a kinematic chain with respect to the
chain independent generalized-coordinate vector q can be expressed in terms of the Jacobian Jw , its time rate, and
the cross-product matrix [w x] ofthe angular velocity as

8w .
8q =Jw+[wx]Jw

2Por example, one can refer to [14; 15; 1], among others.

(22)

Transactions ofthe CSME Ide la SCGM Vol. 31, No.4, 2007 411



(23)

Another relation that we will need in our derivation is the expression for the partial derivative of the velocity of the
body mass-centre with respect to the system generalized coordinates:

OVi = O~ = !£(OCi) = !£(OCi) = !£(OVi)
oq oq dt oq dt oq dt oq
OVi .
-=Jvioq

In the above equations, Ci denotes the position vector of the centre of mass of the ith body expressed in the fixed
frame.

Below, we will use eqs. (22) and (23) to derive all the terms of the Lagrange equation (6).

Computing :t (aT/oq)
Using the relations derived above, We can compute the partial derivative of T with respect to the generalized velocities
q as

n n

= LJ'[,i Ii Jwi q+ LJ~ mi J vi q
i=l i=l

The right-hand side of eq. (24) can then be written in a more compact form:

aT n
J:i7 = L J'fMiJi q
uq i=l

where the Jacobian matrix J i and the inertia dyad M i of the ith link are defined as

(24)

(25)

and (26)

It should be stressed that, as defined above, the two blocks Jwi and J vi 'of J i are referred to two different coordinate
frames, namely, the body frame and the base frame, respectively. Moreover, because Ii is expressed in a body-attached
frame, the inertia dyad remains constant throughout the motion of the multi-body system.

Finally, differentiating eq. (25) with respect to time, we have

(27)

Computing aT/oq
Equations (22) and (23) can be used to differentiate the kinetic-energy expression (18) with respect to the generalized
coordinates:

(28)

which can be rewritten in the more compact form below:
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in which the skew-symmetric, 6 x 6 angular~velocity dyad Wi is defined as

(30)

4.2 The potential energy

The effect of conservative forces, e.g., gravity, can be properly accounted for using a potential energy function. For
brevity, we only consider the gravitational potential energy here; if there are fiexibilities in the system, the potential
energy should be complemented with the elastic potential energy. The potential energy can therefore be expressed as

n

V = - 2:micTg
i=l

(31)

where 9 is the gravitational acceleration. Therefore, the partial derivative of the potential energy with respect to the
generalized coordinates can be computed as

Then, the vector of conservative generalized forces can be obtained from

t:. BV 2:
n

Tfe = --= miJ·gBq v.
i=l

(32)

Of course, one can also include gravity in the model by propagating it from the base of the chain upward, which
amounts to the base having an acceleration of -g. For one such algorithm, one can refer to [16].

For large multi-bodies deployed on orbit, the vector of gravitational acceleration may vary from element to element
due to the dependence of the gravitational acceleration on the distance of the link centre of mass from the Earth centre.
Ifone or more of the bodies is so big that its centres ofmass and gravity do not coincide, an extra term due to the effect
of the resulting gravitational moment should also be added to the expression of the potential energy. In such a case,
the weight of the body applies a moment known as the gravity-gradient torque [17] about the centre of mass of the
body. These gravitational effects cannot be handled by the propagation method mentioned above because, in this case,
the gravitational acceleration is a vector function of the system generalized coordinates, not just a constant vector.

4.3 Applied forces and moments

Let us assume that, in addition to the joint-actuation forces and moments, represented here by T, there are impressed
external forces f;X and moments n~x applied on the bodies; these external forces are assumed to be applied at the
mass centres. We further assume that both f;X and n~x are expressed in the body frame of the ith body. Then, the
generalized force f ne applied on the system can be computed from

n

f ne = T + 2: J[wix

i=l

where (33)

Rotation matrix R; represents the rotation from the base-frame ~ to the body-frame 'B i .

If there is damping in the joints, a generalized damping force f d will be added to the right-hand side of the
expression of fne in eq. (33).
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4.4 The Lagrange equations

Substituting eqs. (27) and (28) in the left-hand side of Lagrange's equation (17), we obtain

n d n n

L f{M i dt (Jiq) + L jTMiJiq - L PTMJi - JTWiMiJi) q = fnc + fc
i=l i=l i=l

n d
=> LJ[[Mid-(Jiq) + WiMiJiq] = f (34)

i=l t

where f is the sum of conservative and nonconservative impressed generalized forces. From eq. (7) and the definition
of J i in eq. (26), we can readily see that

n T A [13 X3f = L J i Wi where Wi = 0
i=l 3x3

Therefore, the equations of motion can be written as

(35)

n d n

LJT[Mid(Jiq) + WiMiJiq] = LJ[Wi
i=l t i=l

(36)

The part of the above equation within the brackets includes the inertial parts of the Newton and the Euler equations
because

M. !:.-(J. .) + W;.M.J. . = [Ii Wi + Wi. X Ii Wi] (37)
, dt ,q " ,q miVi

Since u can be chosen to be qwhen the entries of q are independent, eq. (36), in effect, is the same as the set of Kane's
equations-given by eqs. (1-3)-for the multi-body system with tree structure.

On the other hand, eq. (34) can be rewritten as

n n

L J[MiJiij + L J[ (Mdi + WiMiJi) q = f
i=l i=l

which can be simplified to

M(q)ij + h(q, q) = fnc + fc
n n

M.£. LJ[MiJi and h(q,q).£. [LJ[(Miji + WiMiJi )] q
~l ~1

(38)

(39)

The positive-definite, symmetric matrix M is the system generalized inertia matrix. If taken to the other side of the
equation, vector h(q, q) will represent the vector of centrifugal and Coriolis generalized forces.

Let us define a matrix C as a function of q and q as

n. A'" T( . )C(q,q) = 6Ji MiJi + WiMiJi + MiWiJi
i=l

It can readily be seen that, because Jiq lies in the null-space of Wi,

(40)

n n

C(q,q)q == LJT(Miji + WiMiJi + MiWJi) q == LJT(Miji + WiMiJi) q == h(q,q) (41)
i=l i=l

Hence, eq. (38) can be reformulated in the form below:
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Matrix C, as defined in eq. (40), has the interesting property that M - 2C is skew-symmetric. For verification,
we notice that

n n

. '" ( 'T T' ) '" T( .' )M - 2C = L..J Ji Mdi + Ji MiJi - 2 6 Ji MiJi +WiMiJi + M i WiJi
i=l i=l

n n

= ['" (j!M.J. - J!M.j.)] - 2['" J! (w:.M.J. + M·W:.J.)].L..-.J 1 't 1. 1. 'l.? L-J t· 1. 1. 'l. ? 'l. 1.

i=l i=l

which is the sum of two skew-symmetric matrices, thus being skew-symmetric itself. It should be noted that the
number of floating-point operations required for solving eq. (42) is more than that for eq. (38); however, the former
equation has application in proving the stability of different robot control schemes; see [14; 18; 19] for some examples.

5 DYNAMICS OF CONSTRAINED MULTI-BODIES

Comparing eqs. (6) and (15) of Section 3, one can see that there is one essential difference between the dynamics
equations of unconstrained and constrained systems. In constrained systems, it is the orthogonal projection of ep along
aiJ./aUi directions for i = 1, . .. , m which vanish, not ep itself:

(aiJ.)T [~(aT) _ aT av] = (aiJ.)T
au dt aiJ. aq + aq au f nc

(43)

Reviewing the developments reported in Section 4, one realizes that we have used the assumption of indepen
dent generalized coordinates in two locations: the differentiation of kinetic energy with respect to the generalized
coordinates-where we used Theorem. I-and the derivation of the generalized forces, both conservative and noncon
servative. From these two, the latter has already been addressed through equation (16). The former, on the other hand,
will be discussed below.

For our purposes, the computation of aT/aq hinged on Theorem 1, which provides the partial derivative of the
angular velocity of a body within a kinematic chain with respect to the chain independent generalized coordinates.
Where the generalized coordinates are not independent, we can use the following result:

Theorem 2. The variation of the angular-velocity vector w of a rigid body in a kinematic chain due to a vir-tual
change oq in the chain generalized coordinates can be expressed in terms of the Jacobian Jw , its time rate, and the
cross-product matrix [w x] ofthe angular velocity as

(44)

For the proof, one can refer to Appendix A.
Hence, if the generalized coordinates are subject to the Pfaffian constraints of eq. (8), we can invoke a reasoning

similar to that used in Section 3 to show that-for an independent, complete set u of generalized velocities, quasi
velocities, or both-we will have

aiJ. T ow aiJ. T .
(au) (aq) = (au) (Jw + [wxpw)

Substituting eqs. (45) and (27) in eq. (43), we will obtain

We can rewrite the left-hand side of the above equation as

n a' d
LHS = L (Ji aq)T[Midt(JiiJ.) +WiMiJiiJ.]

i=l U

n d
= L1iT[Midt (JiiJ.) +WiMiJiiJ.]

i=l

(45)

(46)

(47)
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where matrix Ti is defined as

[
aWi aq] [aWi]

Ti ~ Ji aq == aq a"!' == auau aVi aq aVi-- -aq au au
On the other hand, the right-hand side of eq. (46) can be rewritten as

Therefore, the dynamics equations can be written as

n d n

LTt[Midt{Jiq) +WiMiJiq] = L1iTWi
i=l i=l

(48)

(49)

(50)

(A-I)

As seen from eq. (48), Ti is a matrix composed of the partial derivatives of the angular and translational velocities3

of the ith body with respect to the set of independent velocities u. Hence, the equation is in the form of Kane's
equations (1-3).
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6 CONCLUSIONS

Dynamics modelling of both constrained and unconstrained multi-body systems using the Euler-Lagrange approach
was discussed in this paper. The approach requires differentiating the kinetic energy of the system with respect to
the system generalized coordinates and velocities and subsequently differentiating the latter with respect to time. In
the literature, the partial derivative of kinetic energy with respect to the generalized coordinates has been related to
the partial derivative of the elements of the mass matrix with respect to the same variables. Due to the complicated
relation between the elements of the mass matrix and these coordinates, the closed-form formulation of the dynamics
model of a multi-body system through Lagrangian approach traditionally stops at this point.

In this paper, we derived all the relevant partial derivatives in closed form. The partial derivative of particular
interest was that of the kinetic energy with respect to the system generalized coordinates, particularly the part of the
kinetic energy pertaining to the rotational motion. Written in body-attached frames, the link inertia tensors become
constants, thus leaving body angular velocities as the only variables. As such, we derived the partial derivative of the
angular velocity with respect to the system generalized coordinates, in both cases of unconstrained and constrained
systems, in closed form. Subsequently, the dynamics equations of the system were derived; the result was the equations
of motion of the system in the form of Kane's equations.

ApPENDIX A

Theorem 1. The partial derivative of the angular velocity W ofa rigid body in a kinematic chain with respect to the
chain independent generalized-coordinate vector q can be expressed in terms ofthe Jacobian J w , its time rate, and
the cross-product matrix twx] ofthe angular velocity as

aw .
aq=Jw+[WX]Jw

Proof' The angular velocity of a body can be expressed as a function of the body Euler parameters TJ and their time
derivatives, i.e., as W == w(TJ, iJ). More specifically, as seen from eq. (B-19), in the body frame, we have

(A-2)

3Notice that the angular velocity and the translational velocity are expressed in two different frames, the fOlmer in a body-attached frame and
the latter in an inertial frame. As such, the array containing Wi and "IIi is not technically the twist.
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where W ~ [wT O]T is the augmented angular-velocity vector, and '17* is the conjugate of '17, as defined in item 3
of Appendix B. Here, we have used the properties of the quaternion composition operators ® and 0. The definitions
of these operators along with some of their properties are given in Appendix B.

Differentiating eq. (A-2) with respect to the generalized coordinates q, we can use the chain rule to obtain

ow ow 0'17 ow oil * oil . 0'17*
-=--+--=2'17 ®-+2'170-oq 0'17 oq oil oq oq oq

* d(Oil)' * (* 0'17)= 2'17 ® - -. - 2i1 0 '17 0 '17 ®-
dt oq oq

where we have used eq. (B-17), and that

'17 == 'I7(q) :::}

Therefore, using eq. (B-18), we can see that

(A-3)

From the last equation, we can immidiately see that

in which Jw is defined by

(A-4)

and [wx] represents the cross-product matrix of w.

(A-5)

o
Similarly, one can show that a similar relation holds in the inertial frame.

Corollary 1. The partial derivative ofthe angular velocity ~w, where ~ represents the inertial frame, ofa rigid body
in a kinematic chain with respect to the chain independent generalized-coordinate vector q can be expressed in terms

. ofthe Jacobian1?J w, its time-rate, and the cross-product matrix[~wx] ofthe angular velocity as

(A-6)

Theorem 2. The variation of the angular-velocity vector w of a rigid body in a kinematic chain due to a virtual
change in the chain generalized coordinates q can be expressed in terms of the Jacobian J w , its time rate, and the
cross-product matrix [w x] ofthe angular velocity as
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Proof" This theorem can essentially be proven the same way as Theorem 1. The only difference is that, because the
generalized coordinates can be dependent, eq. (B-17) no longer holds. However, we can still relate the virtual changes
0"1* and 0"1 through .

8"1* . * (*. 8"1)-oq = -"1 @ "1 ® - oq
8q 8q

which is basically the same equation projected along oq.
Hence, we will have

ApPENDIX B

(A-8)

o

Let us consider two rotations represented byquaternions "11 and "12 and, at the same time, by rotation matrices Q1 and
Q2, respectively.

1. If these two rotations are performed one after the other in such a way that the resultant rotation Q3 is given by
Q3 = Q1 Q2, the compound quaternion "13 is given by

where quaternion multiplication operations ® and Q9 are defined as below [20]:

(B-9)

and (B-lO)

in which "1v and 'flo are the vector and scalar parts of the quatemion, respectively.

2. The two quaternion composition operators have associative properties, i.e.,

("11 ® "12) ® "13 == "11 ® ("12 ® "13)

("11 Q9 "12) Q9 "13 == "11 Q9 ("12 Q9 "13)

These properties can readily be verified in a symbolic manipulation software such as Maple.

3. Any quatemion "1 £ ["1'[; 'flo] T has a unique conjugate "1* £ [-"1'[; 'flo] T, so that

The partial derivatives of "1 and "1* with respect to the set of generalized coordinates are related through

where matrix D is defined as

D £ [13;'3 03 ]
03 -1

It can readily be shown that D has the following properties

If the generalized coordinates are independent, then we will also have

(B-ll)

(B-12)

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)
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4. The time-derivative of the quaternion in the.body-attached frame is given by [20]

(B-18)

where the augmented angular velocity of the body is defined as w£ [wT of. Using the properties 1,2, and
4 above, we can solve eq. (B-18) for was

(B-19)
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