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ABSTRACT

This paper presents a novel three-degree-of-freedom mechanism based on a known tensegrity
architecture. The mechanism is cable driven and shown to exhibit three-dimensional
translational motion. Analytical solutions to the direct and inverse kinematic problems are
produced based on the geometry and statics of the mechanism. The boundaries of the reachable
Cartesian workspace are developed based on maintaining valid tensegrity configurations and
requiring the actuated cables to be in tension. The low inertia, relatively large workspace
volume and the movement produced by the mechanism make it promising for high speed
applications such as pick and place operations.

Keywords: tensegrity; forward and inverse kinematic problems; reachable workspace.

ANALYSE CINÉMATIQUE D’UN MÉCANISME DE TENSÉGRITÉ AVEC TROIS
DEGRÉS DE LIBERTÉ EN TRANSLATION

RÉSUMÉ

Cet article introduit un nouveau mécanisme à trois degrés de liberté qui est développé à partir
d’une architecture de tenségrité connue. Le mécanisme est entraı̂né par câbles et sa plate-forme
mobile se déplace en translation. Des solutions analytiques aux problèmes géométriques direct
et inverse du mécanisme sont développées à partir de sa géométrie et de son équilibre statique.
Les frontières de l’espace atteignable du mécanisme sont calculées à partir de la nécessité de ce
dernier de demeurer dans des configurations de tenségrité tout en soumettant ses câbles à des
forces en tension. L’inertie réduite des parties mobiles du mécanisme ainsi que son espace
atteignable relativement grand et son mouvement en translation en font un candidat intéressant
pour les applications nécessitant des mouvements rapides comme, par exemple, les opérations
de transfert.

Mots-clés : tenségrité; problémes géométriques direct et inverse; espace atteignable.
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1. INTRODUCTION

The demand for robots in industry is constantly increasing and, in many applications, it is
desirable for these robots to move as quickly as possible. However, there are physical limitations
on the maximum speed of manipulators due to the forces required to accelerate their linkages.
There are two main approaches to addressing this issue: either stronger, and usually larger,
actuators must be used, or the mass of the linkages must be reduced. Parallel mechanisms achieve
the latter by utilizing lightweight, rigid arms and typically locating actuators at their stationary
base. Tensegrity mechanisms could further reduce their inertia, and thereby further increase their
maximum speed, by their extensive use of low mass cables rather than solid links.

Tensegrity is a compound of the words ‘tensile’ and ‘integrity’. Although he did not solely
discover the concept, American architect Buckminster Fuller [1] first coined the word tensegrity
to describe a structure composed of axially loaded compression members held together within a
network of tension cables. By loading these elements appropriately, static equilibrium can be
achieved and the structure experiences a state of self-stress, requiring no external forces to
remain rigid. The lengths of individual elements within tensegrity structures can be strategically
actuated. Variations in these lengths can be controlled to cause desirable changes to the
structures’ geometry, leading to their possible use as robots.

Several applications of tensegrity-based mechanisms already exist. These applications range
from deployable satellite antennae [2] to flight simulators [3]. There have also been several
proposed designs for mobile robots that use tensegrity mechanisms to produce gait [4] and snake-
like locomotion [5]. Additionally, due to their architecture and behaviour, tensegrity mechanisms
have lent themselves well to being used as both planar and spatial robotic manipulators [6,7].

Tensegrity mechanisms have many potential benefits. Elements within a tensegrity remain
axially loaded at all times and do not experience bending moments. This allows thinner and
lighter members to be used without adversely affecting the strength of the structure as a whole.
Additionally, there is the possibility of simple deployment since manipulating tension within
members can allow the entire structure to erect or collapse itself, as shown by Mirats-Tur [8]
and Duffy et al. [9]. As already mentioned, the elements of a tensegrity mechanism can be
extremely light and incorporate cables that can be driven by stationary actuators, as shown by
Sultan and Skelton [10]. This greatly reduces the mass of moving parts, and therefore inertia,
potentially allowing for higher accelerations. Finally, tensegrity mechanisms incorporating
cables generally do not require the complete surrounding of their end-effector by wires to be
stable, unlike many cable driven mechanisms. The lack of interference with cables could extend
their workspace and simplify their practical implementation.

This paper introduces a spatial, three-degree-of-freedom (3-DoF) mechanism based on a known
tensegrity architecture. The element selection and actuation scheme of the mechanism are discussed
and geometric proof is shown that the mechanism can be made to move in pure translational
motion. Translational motion is useful in several applications, including industrial pick and place
operations where a gripper on the end of the manipulator allows for the rapid positioning and
assembly of parts. The inverse and direct kinematics of the mechanism are solved and used to
determine the boundaries of the workspace attainable by the mechanism’s end-effector.

2. DESCRIPTION OF MECHANISM ARCHITECTURE

The mechanism discussed in this paper is based on the reinforced tensegrity octahedron (or
simplex) architecture proposed by Knight [2]. As shown in Fig. 1, it is comprised of three
compressive members, joining nodes A1B1, A2B2 and A3B3, and six tensile members, joining
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nodes A1B2, A1B3, A2B1, A2B3, A3B1 and A3B2. The nodes also form two congruent equilateral
triangles: A1A2A3, which is fixed to ground, and B1B2B3, which acts as the mechanism’s end-
effector. Both triangles have a side length of lb and the end-effector triangle may be considered a
solid plate, allowing for the attachment of tools or grasping devices.

The fixed reference frame, XYZ, used to describe the motion of the mechanism is shown in
Fig. 1. It is located at point O, the centroid of the base triangle, with the X axis aligned with the
line between nodes A1 and A2, the Y axis passing through node A3, and the Z axis normal to the
plane formed by nodes A1A2A3. Within this reference frame, the Ai nodes, (i~1,2,3), are
located by the following vectors:

a1~lb

{1

2

{
ffiffiffi
3
p

6
0

2
66664

3
77775 a2~lb

1

2

{
ffiffiffi
3
p

6
0

2
66664

3
77775 a3~lb

0ffiffiffi
3
p

3
0

2
664

3
775 ð1Þ

The centroid of the mechanism’s end-effector, P, is located in the XYZ frame by the position
vector p~½x,y,z�T. A body fixed reference frame, X 0Y 0Z0, is attached to the end-effector at point
P and is aligned as shown in Fig. 1. Within the X 0Y 0Z0 frame, the three nodes of the end-
effector, Bi, are located by the following vectors:

b1~lb

1

2ffiffiffi
3
p

6
0

2
66664

3
77775 b2~lb

{1

2ffiffiffi
3
p

6
0

2
66664

3
77775 b3~lb

0

{
ffiffiffi
3
p

3
0

2
664

3
775 ð2Þ

Fig. 1. Schematic of the 3-DoF spatial mechanism.
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This mechanism differs from existing tensegrity mechanisms based on the reinforced
octahedron [6,11] in the way it is prestressed and actuated. It utilizes three compression springs
to maintain prestress in each of its components, while six cables of variable length supply
tension to maintain static equilibrium. The compressive members are attached via universal
joints to the base, at Ai, and spherical joints to the end-effector, at Bi. The flexibility of the
cables used as tensile members eliminate the need for additional, coincident spherical or
universal joints. Instead they can be routed through each joint, similar to the method described
by Schenk [12], and actuated by a motorized winch below the base. This particular architecture
is beneficial for its ability to automatically find tensegrity configurations, since when given a set
of cable lengths it will naturally deform to a stable configuration to minimize its potential
energy.

One obstacle with the physical implementation of the mechanism is the interference of the
compressive elements at their respective midpoints (as shown in Fig. 1). This is due to the
geometry of the mechanism and will occur in all of the configurations of the mechanism in
which the end-effector remains aligned with the base (i.e., when reference frames XYZ and
X9Y9Z9 are parallel to each other). To overcome this issue, each compression element is
replaced with a non-interfering spring design, shown in Fig. 2. The design incorporates two
rigid links of length lo=2 that are connected to each other via a revolute joint. A torsion spring is
located at the revolute joint and applies a torque of ti, based on the angle between the links,
represented as 2hi. The virtual spring will thus exert a compressive force of fi, along its effective
length li. Each set of links is attached to the base using a universal joint and to the end-effector
with a spherical joint. The second axis of the universal joint is parallel to the torsion spring-
driven revolute joint of the links while the first is orthogonal to both the second axis and the
vector ai. This constrains each set of links to act within a plane whose normal is the second
universal joint axis.

The half angle, hi, between the two links in each spring is defined as

hi~ arcsin
li

lo

� �
ð3Þ

Assuming that the torsion spring behaves linearly and is at rest when hi~ho~p=2 (i.e., when it

Fig. 2. Illustration of the proposed virtual compression spring design.
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is fully extended), it applies a torque equal to

ti~k(2hi{p) ð4Þ

where k is the torsion spring constant, assumed to be the same for all three springs. By taking a
moment balance about each revolute joint, the force that each virtual spring exerts is found to
be

fi~

2k 2 arcsin
li

lo

� �
{p

� �

lo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

li

lo

� �2
s ð5Þ

which will be a compressive force applied parallel to the virtual spring length. All of the
mechanism’s elements will now be considered in compression if their internal force is negative
and in tension when their force is positive.

With this design, the length lo can be chosen to avoid interference between the links of the
virtual compression springs and cables. This is found to be possible based on a brief inspection
and full analysis of the interference will follow in future work. Additionally, it theoretically
allows the virtual spring to have the full range of 0vlivlo, potentially maximizing the size of
the mechanism’s workspace.

The development of the mechanism’s architecture is based on the desire to reduce the mass of
moving parts, to simplify actuation, and to generate pure translational motion of the end-
effector. To this effect, one may observe the occurrence of the three parallelograms, A1A2B1B2,
A2A3B2B3, and A3A1B3B1, formed by the mechanism’s elements and demonstrated in Fig. 3 for
A2A3B2B3. The arrangement of these parallelograms presents an opportunity to ensure that the
movement of the end-effector triangle is translational only. If the cables remain taut and are
actuated in the following pairs:

r1~jjA2B3jj~jjA3B2jj, r2~jjA1B3jj~jjA3B1jj, r3~jjA1B2jj~jjA2B1jj ð6Þ

the end-effector will remain parallel to the ground. Actuation of the mechanism could be
achieved by using a single motorized winch to drive each pair of cables (total of three winches),
further simplifying the mechanism’s architecture. The input variables of the mechanism are thus
the cable lengths y~½r1,r2,r3�T and the output variables are the components of the position
vector p~½x,y,z�T.

3. SOLUTIONS TO THE DIRECT AND INVERSE KINEMATIC PROBLEMS

For the purpose of this paper, the direct and inverse kinematic problems are solved for the
case in which the cables are assumed inextensible and taut and the base and end-effector
triangles are perfectly rigid.
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3.1. Direct Kinematic Problem
The direct kinematic problem (DKP) is the task of determining the output variables, p, of the

mechanism when supplied with the input variables, y. Since the lengths of all six cables are
known and assumed to be taut, the location of the end-effector can be found through a vector
loop closure method. The length of each cable can be determined through one of two separate,
equivalent vector loops:

r2
1~(pzb3{a2)T(pzb3{a2)~(pzb2{a3)T(pzb2{a3) ð7Þ

r2
2~(pzb1{a3)T(pzb1{a3)~(pzb3{a1)T(pzb3{a1) ð8Þ

r2
3~(pzb2{a1)T(pzb2{a1)~(pzb1{a2)T(pzb1{a2) ð9Þ

where the orientation of the end-effector remains aligned with the base due to the existence of
the parallelograms developed in Section 2. It can be recognized that, when the end-effector
reference frame (X 0Y 0Z0) is aligned with the base’s (XYZ), bi~{ai and the sum of any two of
the ai vectors is equal to the negative of the third. Then, using either set of vector loops
presented in Eqs. (7–9), the actuator lengths are found to be equivalent to

r2
i ~(pzai)

T(pzai) ð10Þ

Expanding these equations leads to a general expression for the length of cable i in terms of the
unknown position vector p and the known vectors ai as follows:

r2
i ~pTpz2pTaizaT

i ai~x2zy2zz2z2xaixz2yaiyza2
ix
za2

iy
ð11Þ

Solving Eq. (11) for x, y, and z gives

Fig. 3. Location of the parallelogram A2B3B2A3 with respect to the rest of the mechanism.
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This shows that there are two solutions to the DKP for every input y, one of them corresponds
to a configuration above the XY plane and the other to the same configuration below the XY

plane. Only one of these configurations is possible for the mechanism to achieve without
colliding with its base, therefore the solution with a negative z value is ignored. Thus the
solution to the DKP is a one-to-one mapping between the actuator space and Cartesian space.

3.2. Inverse Kinematic Problem
The inverse kinematic problem (IKP) is the task of determining the actuator variables, y,

required to achieve a given position of the mechanism’s end-effector, p. Similar to other parallel
mechanisms, the process of solving the IKP for this mechanism is relatively straightforward.

When given the position of the end-effector platform, points Bi are known and the same
vector loops used in the DKP can be used to determine the lengths of each cable pair. Taking
the square root of Eq. (10) gives

ri~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(pzai)

T(pzai)

q
ð15Þ

which is the solution to the IKP.

4. DETERMINATION OF CARTESIAN WORKSPACE BOUNDARIES

The Cartesian workspace of the mechanism is defined as the three-dimensional volume of
space containing all values of p that can be attained by the mechanism in stable tensegrity
configurations. The workspace boundaries are based on two sets of constraints: kinematic
constraints such as the minimum and maximum lengths of the springs, and the constraint
requiring that the mechanism always be in static equilibrium with the cables in tension. Again,
the workspace is based on the special conditions of inextensible cables and a perfectly rigid base
and end-effector. The methods presented also consider only internal forces, assuming gravity
and external forces to be zero.

4.1. Kinematic Constraints
The first boundary of the workspace is simply the XY plane, since the position of the end-

effector cannot pass through this plane or the mechanism will collide with itself. In reality,
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physical limitations, such as those imposed by the mechanism’s joints, would also prevent this
from occurring.

The other boundaries are dependent on the minimum and maximum attainable lengths of the
mechanism’s actuators and compression springs. Since practically any length of cable can be
wound onto the mechanism’s actuators (motorized winches), the actuator lengths are left
unconstrained. However, the compression springs will have physical restrictions on their
effective lengths, li. The effective length is found to be

(pzbi{ai)
T(pzbi{ai)~l2

i ð16Þ

Letting the minimum and maximum length of each compression spring be lmin and lmax,
respectively, and recognizing that when the end-effector has no rotation bi~{ai, Eq. (16) can
be rewritten as the following constraints:

(p{2ai)
T(p{2ai)§l2

min ð17Þ

(p{2ai)
T(p{2ai)ƒl2

max ð18Þ

which are the equations of spheres centred at 2ai with a radius of either lmin or lmax. The
workspace volume is then the volumes of the three smaller spheres (of radius lmin) subtracted
from the intersection of the three larger spheres (of radius lmax). Based solely on these kinematic
constraints, an example of the Cartesian workspace is shown in Fig. 4, using the range of
0ƒliƒlo and the arbitrary value of lmax~lo~3lb. The torsion spring within the virtual
compression member design is assumed to be capable of this full range.

4.2. Static Constraints
The Cartesian workspace is further constrained based on the requirements that the

mechanism always be in a state of self-stress and the cables remain in tension. To determine
whether a given configuration satisfies the equilibrium and tension requirements, the wrench, w,
of the end-effector is found as

w~Wf fzWtt~0 ð19Þ

where

Wf ~
u1 u2 u3

b1|u1 b2|u2 b3|u3

� �
ð20Þ

and

Wt~
n1 n2 n3 n1 n2 n3

b3|n1 b3|n2 b2|n3 b2|n1 b1|n2 b1|n3

� �
ð21Þ
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are the wrench matrices that relate the magnitude of the forces within each element to the force
and moment they apply on the end-effector. The unit vectors ni and ui are aligned with the
corresponding mechanism’s elements, as shown in Fig. 1. Furthermore, the vectors f and t are

f~½f1,f2,f3�T ð22Þ

t~½t1,t2,t3,t4,t5,t6�T ð23Þ

with fi being the force within the ith spring (as determined by Eq. 5) and tj being the
corresponding force of the jth cable, (j~1,2, . . . ,6). In the definitions of fi and tj, compression is
considered to be a negative force, tension positive.

The boundaries of the workspace correspond to the loss of tension in one or more cables. To
find where tension is lost Eq. (19) is solved by using the inverse of the Wt matrix:

t~{W{1
t Wf f ð24Þ

This method is valid so long as Wt is invertible. The determinant of Wt is found to be

det (Wt)~
{3

ffiffiffi
3
p

4

z3l6
b

r2
1r2

2r2
3

� �
ð25Þ

which shows that Wt would cease to be invertible when z~0. However, since a configuration of
the mechanism with z~0 would cause its elements to collide with its base or each other, the
singularity condition will be avoided in practice. Additionally, it can be observed from Eq. (10)
that the length of the ith actuator, ri, will only equal zero when the mechanism’s end-effector is

Fig. 4. Horizontal slices of the Cartesian workspace at various heights (z) based only on kinematic
constraints with lb~2, lmin~0 and lmax~lo~3lb. The base triangle A1A2A3 is shown for size
reference.
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in a position such that p~{ai. The vectors ai have no Z component and thus these
configurations will occur at the same time as the singularity identified above.

Solving Eq. (24) for tj in terms of the spring forces fi yields

t1~t4~
r1

2
z

f1

l1
{

f2

l2
{

f3

l3

� �
ð26Þ

t2~t5~
r2

2
{

f1

l1
z

f2

l2
{

f3

l3

� �
ð27Þ

t3~t6~
r3

2
{

f1

l1
{

f2

l2
z

f3

l3

� �
ð28Þ

where ri and li are functions of p as shown in Eqs. (15) and (16), respectively. The values
within the brackets can be further simplified through the use of force densities (also referred to
as tension coefficients, e.g., [13]) defined as f̂fi~fi=li. For the mechanism’s cables to be in
tension, Eqs. (26–28) must remain greater than zero and thus the following three conditions
are arrived at:

zf̂f1{f̂f2{f̂f3

� �
w0 ð29Þ

{f̂f1zf̂f2{f̂f3

� �
w0 ð30Þ

{f̂f1{f̂f2zf̂f3

� �
w0 ð31Þ

These equations describe the boundaries of three volumes of space. The intersection of these
boundaries contain all equilibrium configurations of the mechanism where tension is
maintained in all cables.

The workspace may be visualized for the spring design introduced in Section 2 by substituting
values of fi, based on Eq. (5), into Eqs. (26–28). Again using the arbitrary maximum effective
spring length of lo~3lb, the boundaries of this static workspace are shown in Fig. 5 and Fig. 6.
The outer boundaries correspond to one or more of the springs becoming fully extended and no
longer applying any compressive force. Therefore, these are the same as the kinematic
boundaries previously found when li~lmax. The inner boundaries are based on the static
constraints and are independent of the spring stiffness used.

5. CONCLUSIONS

This paper presented a novel spatial mechanism based on the principles of tensegrity and
actuated by cables. Translational motion of the mechanism’s end-effector through
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Cartesian space was achieved using strategic actuation of the cables. Simple analytic
solutions to the direct and inverse kinematic problems were produced, based on the
assumption that the mechanism remained in a state of self-stress with cables in tension.
Testing the assumption revealed the boundaries to the attainable workspace of the
mechanism and thus to the space within which the analytical solutions are valid. These
boundaries were clearly defined and shown to be dependent on the length of the spring links
and independent of their stiffness.

Fig. 5. Horizontal slices of the Cartesian workspace at various heights (z) based on both static and
kinematic constraints with lb~2 and lo~3lb.

Fig. 6. Cartesian workspace based on both static and kinematic constraints with lb~2 and lo~3lb.
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The workspace presented did not consider gravitational or external forces being applied to
the mechanism. However, the authors believe that if the mechanism were oriented favourably
with gravity, the mass of the mechanism and payload would add to the tension within the
mechanism’s cables and potentially expand its reachable workspace. Pick and place operations,
where the mechanism is located above its workspace and gravity acts in a downward direction,
are a potential application that would benefit from this larger workspace. Additionally, one of
the workspace boundaries is theoretically the XY plane. Therefore the mechanism is potentially
capable of being actuated into a flattened configuration and being deployed from a very small
volume, limited only by mechanical interference.

Further work by the authors is planned to investigate the effects of external loads in greater
detail as well as what constraints, if any, are placed on the workspace due to interference
between elements. The dynamics of the mechanism, in particular the vibrational effects of the
torsion springs, must be further explored.
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