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ABSTRACT
The design of flexible manipulator is complicated due to inherently infinite dimension in nature. The se-
quential challenge is the problem such a non-minimum phase that is the cause of system instability. In this
paper, a constrained single-link flexible arm is fully investigated using a linear distributed parameter model.
In order to overcome the inherent limitations, a new input induced by the joint angular acceleration and
an output generated using the contact force and root shear force are defined. A necessary and sufficient
condition is thus derived so that all poles and zeros of the new transfer function lie on the imaginary axis.
Also, the passive integral control is designed to accomplish the regulation of the contact force. The excellent
performance of the passive integral controller is verified through numerical simulations.

Keywords: joint angular acceleration; contact force; root shear force; integral controller.

COMMANDE INTÉGRALE PASSIVE ET ANALYSE DE STABILITÉ D’UN BRAS FLEXIBLE
CONTRAINT À MAILLON SIMPLE

RÉSUMÉ
La conception d’un bras manipulateur flexible se complique à cause de sa dimension infinie naturellement
inhérente. Le problème est le défi séquentiel, une telle phase non-minimale est la cause de l’instabilité
du système. Dans cet article, nous investiguons un bras flexible contraint à maillon simple en utilisant un
modèle linéaire à paramètre distribué. Pour surmonter les limitations inhérente définies, une nouvelle donnée
d’entrée induite par l’accélération due au joint angulaire, et une donnée de sortie, sont générées, utilisant la
force de contact et la force de contact tangentielle. Une condition nécessaire et suffisante est dérivée à tous
les pôles et zéros pour faire en sorte que la nouvelle fonction de transfert se base sur un axe imaginaire.
également, la commande passive intégrale est conçue pour accomplir la régulation de la force de contact.
L’excellente performance du contrôleur passif intégral est vérifiée par des simulations numériques.

Mots-clés : accélération de joint angulaire ; force de contact tangentielle ; contrôleur intégral.
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NOMENCLATURE

an, cn, βn(ε) roots of transcendental equations defined in the Appendix
EI bending stiffness of the beam, N-m2

Gλτ , etc. transfer functions
Ih mass moment of inertia of the hub, kg-m2

k a dimensionless parameter used to define the new output y(t)
kI controller gain constants
` length of the beam, m
N,n positive integers
s, ŝ Laplace transform variable
t time variable, s
u(t) a new input defined by Eqn. (9), N-m
v(x, t) transverse deflection, m
w(x, t) actual location of the neutral axis of the beam, m
x coordinate axes
y(t) a new output defined by Eq. (8), N
yd(t) desired output trajectory, N
ε,β dimensionless parameters defined by Eq. (6)
θ(t) joint angle, rad
λ (t) contact force, N
ρ mass density of the beam, N-m−1

τ(t) joint torque, N-m

1. INTRODUCTION

Force control of constrained flexible manipulators has continuously attracted much attention in both
academia and industry in recent years. The issue is very important in connection with practical applica-
tions especially for light weight industrial robots in assembly, deburring and grinding tasks. The controller
design for such a force control is, however, quite difficult due to the inherent limitations like nature dis-
tributed parameter of flexible arms, the noncollocation of torque actuation and contact force sensing. Based
on finite-dimensional approximate models, a pioneer research in a single-link constrained flexible manip-
ulator was carried out in [1]. The outcome showed that the link flexibility is the major source of control
system instability. Later, Li [2] indicated that an inherent limitation on the achievable bandwidth occurs
from the presence of infinitely non-minimum phase zeros. Some methods based on a lumped parameter
model for a single-link flexible robot were thus developed [3, 4] to simplify the dynamics of a flexible arm
with the tip forces. However, it was suitable only for one or two degrees of freedom flexible robots [3, 4].
Accordingly, a variety of nonlinear hybrid force-position controllers was proposed using nonlinear finite-
dimensional dynamic models [5, 6] for constrained flexible robots. However, these proposed methods may
not guarantee the stability of the original distributed parameter systems because of spillover problems. Mat-
suno and Kasai [7] then derived the distributed parameter model for a constrained one-link flexible arm
with a concentrated tip mass, a finite-dimensional model for force feedback and compliance control. More
recently, Bazaei and Moallem [8] used distributed parameter model for a constrained flexible beam actuated
at the hub. The maximum control bandwidth was obtained by applying the output redefinition. In order to
compensate the spillover instability caused by residue modes which are not included in the controller design,
an optimal controller with low-pass property and a robust H∞ controller were proposed in [7, 8]. Further,
Bazaei and Moallem [9] improved force control bandwidth of the constrained one-link arm through outputs
redefinition. The distributed parameter models were derived in [9], but finite-dimensional models were still
used for controller designs.

As we know that the flexible arm is an inherently infinite-dimensional system, the controller design us-
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ing distributed parameter model becomes more complicated. In order to avoid the spillover from finite-
dimensional approximation, the distributed parameter model from [10, 11] was applied to resolve the force
control problem for a constrained one-link flexible manipulator. Unfortunately, the system stability was
found only in a sufficient condition [10, 11]. Similarly, the stability of the switching collision was also
involved into a sufficient condition [12]. Additionally, the exact solutions for the closed-loop system can
not be obtained [12]. Recently, the infinite product formulation has been utilized to design a PD controller
for a linear distributed parameter model in the constrained one-link flexible arm [13]. Liu and Lin [14] fur-
ther worked on the constrained one-link flexible arm with internal material damping. However, the passive
property was not proved in these studies [13, 14].

In this paper we develop a linear distributed parameter model to obtain an exact solution to the above
contact force regulation problem. Based on this proposed model, the globally stable infinite-dimensional
closed loop system can be achieved. The paper is divided into four sections. Section 2 describes the proposed
linear distributed parameter model mathematically. The non-minimum phase transfer function, condition
for the nonexistence of right half-plane zeros, passivity proof, and passivity-based integral control are also
included. The simulation results using a numerical example are provided and discussed in detail in Section 3.
Conclusions are presented in Section 4.

2. MATHEMATICAL MODEL

Consider that the constrained one-link flexible arm is a uniform, homogeneous, Euler–Bernoulli beam [15–
17] of length `, mass per unit length ρ , and flexural rigidity EI. The hub is modelled by a single-mass
moment of inertia Ih, where the driven torque τ(t) is applied. The contact force exerted by the smooth rigid
constraint surface is λ (t). The θ(t) designates the hub rotation angle, and v(x, t) denotes the small elastic
deflection of the link. The constraint equations of motion and boundary conditions are well-established [13],
and introduce the new variable w(x, t) as

w(x, t) = xθ(t)− v(x, t) (1)

Then, the dynamic equations of the constrained arm can be obtained as

ρẅ(x, t)+EIwxxxx(x, t) = 0 (2)

w(0, t) = 0, w(`, t) = 0, wx(0, t) = θ(t), wxx(`, t) = 0 (3)

EIwxxx(`, t) = λ (t) (4)

Ihθ̈(t) = τ(t)+EIwxx(0, t) (5)

2.1. Non-Minimum Phase Transfer Function
The transfer function can be derived by taking the Laplace transform of Eqs. (2)–(5) with zero initial condi-
tions. Let s be the Laplace transform variable, and define the dimensionless parameters β , ε , and ŝ as

β
4 =−ρ`4

EI
s2 =−ŝ2, ε =

Ih

ρ`3 (6)

The solution of Eq. (2) can be written in the Laplace transform domain as

w(x, ŝ) =C1 cosh
β

`
x+C2 cos

β

`
x+C3 sinh

β

`
x+C4 sin

β

`
x (7)

where Ci(β ), i = 1, 2, 3, 4 are unknown parameters. Substitution of Eq. (7) into Eqs. (3)–(5) and solving
for C2, C3, C4, θ , λ , τ and u yield

C2 =−C1 (8)
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C3 =−
coshβ

sinhβ
C1, C4 =

cosβ

sinβ
C1 (9)

θ(ŝ) =C1
β

`
· cosβ sinhβ − coshβ sinβ

sinβ sinhβ
(10)

λ (ŝ) =−C1EI
β 3

`3 ·
sinβ + sinhβ

sinβ sinhβ
(11)

τ(ŝ) =C1EI
β 2

`2 ·
[

2+ εβ
3 · cosβ sinhβ − coshβ sinβ

sinβ sinhβ

]
(12)

u(ŝ) =−C1EI
β 5

`2 ε · cosβ sinhβ − coshβ sinβ

sinβ sinhβ
(13)

Using Eq. (7), one further obtains

vxx(0, ŝ) =−wxx(0, ŝ) =−2C1
β 2

`2 (14)

vxxx(0, ŝ) =−wxxx(0, ŝ) =C1
β 3

`3
cosβ sinhβ + coshβ sinβ

sinβ sinhβ
(15)

After algebraic manipulations, one obtains

λ (ŝ)
τ(ŝ)

= Gλτ(ŝ) =
β

`
· sinhβ + sinβ

2sinhβ sinβ − εβ 3(coshβ sinβ − sinhβ cosβ )
(16)

By applying the infinite product expansions of transcendental functions (see A1 to A4 of the Appendix),
Eq. (16) can be rewritten as

Gλ τ(ŝ) =
λ (ŝ)
τ(ŝ)

=
β

`

sinhβ + sinβ

2sinhβ sinβ − εβ 3(coshβ sinβ − sinhβ cosβ )

=
1
`
·

∏
∞
n=1

(
1− ŝ2

ω2
zn

)
∏

∞
n=1

(
1+ ŝ2

ω2
θn

) (17)

In Eq. (17), it is found that Gλτ(ŝ) has infinitely many zeros in Re(ŝ)> 0. Thus, Gλτ(ŝ) is a non-minimum
phase. It is well established hat the existence of non-minimum phase zeros imposes fundamental limitations
in the achievable performance of the closed-loop system. To alleviate the non-minimum phase problem, the
real zeros of Gλτ(ŝ) can be replaced by the zeros on the imaginary ŝ-axis using the method of redefinition
of output [18]. With the new output, the transfer function is a marginal minimum phase but not necessarily
passive. Fortunately, the poles of Gλτ(ŝ) can be made to move along the imaginary ŝ-axis by using an
appropriate feedback. Combining the feedback and the output redefinition, it is possible to find a new
transfer function which satisfies the so-called the interlacing property. A transfer function with a simple
pole at the origin is said to satisfy the interlacing property if all its poles and zeros lie on the imaginary
ŝ-axis, are distinct and alternate each other. Such transfer functions are known as passive transfer functions.
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Fig. 1. The construction of a new input and a new output.

2.2. Condition for the Nonexistence of Right Half-Plane Zeros
It is well known that for nonminimum phase systems, perfect asymptotic tracking of output trajectories with
internal stability cannot be achieved. To alleviate the non-minimum phase problem, the right half-plane
zeros can be replaced by the left half-plane zeros by the method of redefinition of output. Let the new output
be chosen as

y(t) = (k−1)[EIvxxx(0, t)+λ (t)]+λ (t) (18)

where the contact force λ (t) can be measured by a force sensor [8, 9] located at the tip of the arm. Also,
the shear force signal vxxx(0, t) can be detected by a similar full-bridge strain gauge [8, 9] cemented at the
pinned end of the arm, where k is a real constant whose permissible values will be determined to satisfy the
minimum phase condition. Let the joint torque τ(t) be given by

τ(t) = Ihθ̈(t)+u(t) (19)

where the joint angular acceleration θ̈(t) can be measured [19]. The construction of a new input and a new
output is shown schematically in Fig. 1. One obtains

Gyu(ŝ,k) :=
y(ŝ)
u(ŝ)

=
β

2`
× (1− k)(coshβ sinβ + sinhβ cosβ )+ k(sinβ + sinhβ )

sinβ sinhβ
(20)

Now, using Eq. (6) for the zeros of Gyu(ŝ,k) are given by the roots of

k
1− k

·
∏

∞
n=1

[
1+ 4ŝ2

ω2
zn

]
∏

∞
m=1

[
1− ŝ2

ω2
zm

] =−1 (21)

where A1 and A5 from the appendix have been used in deriving Eq. (21). The root locus of Eq. (21) for
−∞ < k < 1 is shown in Fig. 2 based on a 6 pole-zero pair approximation. The approximate breakaway
points on the imaginary ŝ-axis are ±15.449 j, ±105.826 j, ±285.327 j corresponding to k = 0.592, 0.631,
0861, respectively. Note that the breakaway points on the imaginary ŝ-axis actually corresponds to the real
positive double roots of N(β ,k) = 0, or equivalently,

coshβ sinβ + sinhβ cosβ =− k
1− k

(sinhβ + sinβ ) (22)

Further, the asymptotic behavior of Eq. (22) is governed by

sinβ + cosβ =− k
1− k

(23)
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Fig. 2. Root locus of Eq. (21) for −∞ < k < 1 using a 6 pole-zero pair approximation.

It is easy to verify from the numerical solutions of Eq. (22) and the simple graph of Eq. (23) that (i) the
smallest real positive double roots β = 3.921 (ŝ = ±15.372 j) occur when k = 0.592, (ii) a larger value
of real positive double roots occur at a larger value of k, and (iii) there are no real positive double roots
for k < 0.592. Therefore it is impossible to have any breakaway point on the imaginary ŝ-axis for k <
0.592. We conclude that, with the previously defined new input and output, the constrained one-link flexible
manipulator is a minimum phase iff −∞ < k ≤ 0.592. Obviously, this necessary and sufficient condition
is obtained via the numerical solution of the exact transcendental equation N(β ,k) = 0, not by the finite-
dimensional approximation of the root locus. One can write

(1− k)(coshβ sinβ + sinhβ cosβ )+ k(sinβ + sinhβ ) = 2β

∞

∏
n=1

(
1+

ŝ2

ω2
αn(k)

)
(24)

The numerical values that can be computed using ωαn = β 2
n , where βn(k), n = 1, 2, · · · is the real positive

roots of the numerator of Eq. (24). The numerical solutions of N(β ,k) = 0, (i.e. ωα n(k)) for several
values of k are listed in Table 1. According to Eq. (23) and confining ourselves to ŝ = ± jβ 2, there must
exist one and only one ŝ = ± jωαn(k) (i) with −∞ < k < 0.5 in every internal 0 < β < π for n = 1, and
(n− 1

2)π < β < nπ for n≥ 2, (ii) with 0.5 < k≤ 0.592 in every internal nπ < β ≤ (n+ 1
4)π for n=odd, and

(n− 3
4)π ≤ β < (n− 1

2)π for n = even. Thus, a minimum phase stable transfer function can be deduced as

Gyu(ŝ,k) =
1
`
·

∏
∞
n=1

(
1+ ŝ2

ω2
αn(k)

)
∏

∞
n=1

(
1+ ŝ2

n4π4

) (25)
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Table 1. Values of ωα n(k) vs. different values of k.
k ωα1 ωα2 ωα3 ωα4 ωα5 ωα6
−∞ 0 6.2832 7.8532 12.5662 14.1372 18.8502

−1000 0.3942 6.2822 7.8542 12.5652 14.1382 18.8492

−100 0.6992 6.2732 7.8632 12.5572 14.1472 18.8402

−10 1.2222 6.1962 7.9412 12.4792 14.2242 18.7622

−1 1.9182 5.8582 8.2782 12.1422 14.5612 18.4262

−0.7 2.0102 5.7922 8.3442 12.0762 14.6272 18.3602

−0.5 2.0852 5.7352 8.4012 12.0192 14.6852 18.3022

−0.3 2.1762 5.6612 8.4752 11.9452 14.7592 18.2282

0 2.3652 5.4982 8.6392 11.7812 14.9232 18.0642

0.3 2.6862 5.1932 8.9472 11.4732 15.2302 17.7562

0.5 3.1422 4.7302 9.4252 10.9962 15.7082 17.2792

0.592 3.9272 3.9272 10.1412 10.3052 15.9352 17.1482

2.3. Proof of Passivity
Let Gyu(ŝ)

ŝ be expressed as

Gyu(ŝ)
ŝ

=
1
`
·

∏
N
n=1

(
1+ ŝ2

ω2
αn

)
ŝ∏

N
n=1

(
1+ ŝ2

n4π4

) =
A0

ŝ
+

N

∑
i=1

Aiŝ
ŝ2 + i4π4 (26)

where by assumption N→ ∞, 0 < ωα1 < ωα2 < · · ·< ωαN < · · · . It is easy to show that A0 =
1
` and

Ai =−
A0

ω2
αi

N

∏
n=1

(
n2π2

ωαn

)2
∏

N
n=1
(
ω2

αn− i4π4
)

∏
N
n=1
n6=i

(n4π4− i4π4)
(27)

for i = 1, 2, . . . , N. Note that if A0 > 0 and Ai > 0 for i = 1, 2, . . . (N → ∞), then Gyu(ŝ)/ŝ is a passive
transfer function since it is the sum of passive transfer functions (see Eq. (26)). We now proceed to prove
the assertion by induction that if Ai > 0, i = 1, 2, . . . (N→∞), then the interlacing property holds for Gyu(ŝ)

ŝ .
Using the ŝ = jωαn(k) with −∞ < k < 0.5 in every internal 0 < ω2

αn(k) < π2 for n = 1 and (n− 1
2)

2π2 <
ω2

αn(k)< n2π2 for n≥ 2, and referring to Eq. (26), it can be easily shown that (i) for N = 1, A1 > 0 implies
ωα1 < π2, and (ii) for N = 2 and ωα1 < π2, A1 > 0 implies π2 < ωα2 and A2 > 0 implies ωα2 < 4π2.
Assume that for each positive integer N, Ai > 0, i = 1, 2, . . . , N imply 0 < ωα1 < π2 < ωα2 < 4π2 < · · ·<
ωαN < N2π2. Then for the positive integer N+1, it can be shown using Eq. (27) that Ai > 0, i = 1, 2, . . . , N
imply N2π2 < ωα,N+1 and AN+1 > 0 implies ωα,N+1 < (N +1)2π2. This proves the above assertion for all
positive integers N. One concludes that Gyu(ŝ)

ŝ satisfies the interlacing property. Therefore, Gyu(ŝ)
ŝ is a passive

transfer function for −∞ < k < 0.5.

2.4. Passivity-Based Integral Control
Consider the control structure as shown in Fig. 3. With the integral control principle,

u(ŝ) =
kI`
ŝ

1+ kI`
ŝ Gyu(ŝ,k)

yd(ŝ) (28)

where yd(ŝ) is the Laplace transform of the desired output trajectory, and kI is a positive constant.
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Fig. 3. Passive integral control structure.

Fig. 4. Effects of passive integral control: 0≤ kI < ∞.

The poles of the closed-loop system are given by the roots of the characteristic equation as

1+
kI`

ŝ
Gyu(ŝ,k) = 0 (29)

With Gyu(ŝ,k) given by Eq. (25), Eq. (29) becomes

kI

ŝ
·

∏
∞
n=1

(
1+ ŝ2

ω2
αn(k)

)
∏

∞
n=1

(
1+ ŝ2

n4π4

) =−1 (30)

It can be easily verified (see Fig. 4) using a simple root locus plot that the I-control suffices to stabilize
the closed-loop system for all 0 < kI < ∞.

3. SIMULATION

The effectiveness of the proposed control approach is evaluated using the same parameters of an experi-
mental apparatus described in [20]. These parameters are set as: ρ = 0.307 kg/m, ` = 0.85 m, EI = 5.425
N-m2, and Ih = 0.01 kg-m2. The contact force parameter and controller gain were selected as k = 0.4 and
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Fig. 5. Contact force regulation: (a) λ (t) —, yd(t) - - -; (b) τ(t) —, EIvxx0, t) - - -; and (c) θ(t).

Fig. 6. Disturbance rejection: (a) λ (t); (b) τ(t) — EIvxx(0, t) - - -; and (c) θ(t).

kI = 7.533. The desired contact force trajectory was selected as

yd(t) = 1− e−10 t (31)

which results in limt→∞ λ (t) = limt→∞ y(t) = 1 N, limt→∞ vxx(0, t) = 0.157 m−1, limt→∞ θ(t) = 4.439×10−2

rad and limt→∞ τ(t) = 0.85 N-m. The simulation results, shown in Fig. 5, is found hardly discernible since
N ≥ 4. It indicates that the tracking of a desired contact force trajectory promises both quick response and
high accuracy with internal stability.

Assume that the flexible link remains in the steady state, but there is an initial joint angular displacement.
Since the Laplace transform of Eqs. (5) and (19) yield Ih [s2∆θ (s)−s∆θ(0)−∆θ̇(0)] = u(s), the initial joint
angular displacement perturbed from the steady state solution can be regarded as a disturbance entering the
plant as shown in Fig. 3. The responses for the disturbance ∆θ := θ(0)− 4.439× 10−2 = −0.2 rad are
perturbed from the steady state solution, and the results are shown in Fig. 6. It is evident that the disturbance
rejection is achieved successfully.

4. CONCLUSIONS

A constrained one-link flexible arm has been fully studied using a linear distributed parameter model. The
root bending moment is considered as the input, and the contact force plus its weighted value and root
shear force is chosen as the output. A necessary and sufficient condition for the new transfer function to
be a minimum phase (i.e., its transfer function does not have any zeros in the open right-half plane) has
been approved. This minimum phase condition is especially valuable since it is independent on the physical
parameters of the flexible link. Further, the passive integral controller can stabilize the infinite-dimensional
closed loop system. Unlike most traditional approaches generally suffering from control and observation
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spillover problems, the exact solutions have been deduced for the noncollocated infinite-dimensional force
control system.

APPENDIX

The infinite product expansions for transcendental functions throughout the paper are summarized as given
below [13, 18]. Also, ŝ2 =−β 4 is used whenever it is required.

(A1) sinβ + sinhβ = 2β ∏
∞
n=1

(
1− ŝ2

ω2
zn

)
, ωzn = 2a2

n , tanhan + tanan = 0 , an =
(
n− 1

4

)
π as n→ ∞

(A2) sinβ sinhβ = β 2
∏

∞
n=1

(
1+ ŝ2

n4π4

)
(A3) coshβ sinβ − cosβ sinhβ = 2

3 β 3
∏

∞
n=1

(
1+ ŝ2

ω2
βn

)
, ωβn = c2

n, tanhcn− tancn = 0 , cn =
(
n+ 1

4

)
π as

n→ ∞

(A4) 2sinhβ sinβ − εβ 3(coshβ sinβ − sinhβ cosβ ) = 2β 2
∏

∞
n=1

(
1+ ŝ2

ω2
θn

)
, ωθn = β 2

n (ε)2sinβn −
εβ 3

n (sinβn− cosβn) = 0 , βn(ε) =
(
n− 3

4

)
π + 1

ε(n− 3
4 )

3π3 as n→ ∞

(A5) coshβ sinβ + sinhβ cosβ = 2β ∏
∞
n=1

(
1+ 4ŝ2

ω2
zn

)
,ωzn = 2a2

n, tanhan + tanan = 0 ,an =
(
n− 1

4

)
π as

n→ ∞

Note that the asymptotic expressions are found very accurate (to three decimal places) since n≥ 5.
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