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ABSTRACT
This paper presents a comprehensive and straightforward method for the mathematical modeling of a generic
ball-end cutter. In the proposed approach, a mathematical model of the rake surface is developed based on
a normal helix cutting edge geometric model. A mathematical model of the flank surface is then derived
based on the assumption of a constant clearance angle. The proposed model is applicable to a wide range
of ball-end cutters. As a result, it provides an ideal basis for the generation of the NC equations required to
machine ball-end cutters on a 6-axis CNC grinding machine.

Keywords: ball-end cutter; homogenous coordinate transformation; mathematical model.

APPLICATION D’UNE MATRICE DE TRANSFORMATION HOMOGÈNE À LA
MODÉLISATION D’UNE FRAISE À EMBOUT SPHÉRIQUE

RÉSUMÉ
Cet article présente une méthode simple et complète pour la modélisation mathématique d’une fraise à em-
bout sphérique génétique. Dans l’approche proposée, un modèle mathématique de la surface de la rainure
est développé en se basant sur un modèle géométrique de l’angle de coupe d’une hélice normale. Un mo-
dèle mathématique de la surface du flanc est alors dérivé en se basant sur la présomption d’un angle de
dégagement constant. Le modèle proposé est applicable à une grande variété de fraise à embout sphérique.
De ce fait, il donne une base idéale pour la génération des équations NC requises pour les fraises à embout
sphérique sur une machine à meuler CNC.

Mots-clés : fraise à embout sphérique ; homogène ; transformation coordonnée ; modèle mathématique.
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NOMENCLATURE
jAi Configuration of frame (xyz)i with respect to frame (xyz) j
θ ,ϕ: Parameters of ball surface
R: Radius of ball-end cutter
R1 Radius of larger end face of conical type grinding wheel
pz Lead of the helicoids of ball-end cutter
β0 Helix angle of cutting edge on cylindrical surface of ball-end cutter
β Helix angle of cutting edge on ball surface of ball-end cutter
ρ Semi-conical angle of grinding wheel
H Thickness of grinding wheel
λ Cutting edge inclination angle
pr Tool reference plane
γn Normal rake angle
κr Cutting edge angle

1. INTRODUCTION

Ball-end cutters are widely used for the machining of free-form surfaces and have therefore attracted sig-
nificant attention in the literature. For example, Milfellner [1] performed a numerical investigation into the
cutting forces developed in ball-end milling, while Lu et al. [2] presented an integrated methodology for the
design, creation and evaluation of ball-end cutters. Jin et al. [3] developed a CBN ball-nosed end mill with a
newly-designed cutting edge. Xiong and Bin [4] proposed a method for the CNC grinding of taper ball-end
cutters using a torus-shaped grinding wheel. Chen and Bin [5] presented a novel method for producing
the rake face of a taper ball-end mill using a CBN spherical grinding wheel. Chen et al. [6] performed a
numerical investigation into the grinding of ball-end milling cutters with a constant normal rake angle. The
current study presents a systematic methodology for modeling a ball-end cutter comprising a rake face with
a constant normal rake angle and a flank face with a constant orthogonal clearance.

In the homogeneous coordinate transformation notation used in the present study, the point vector
axi+ ayj+ azk is written in the form of the column matrix ja = [ax ay az 1]T , where the pre-superscript
“ j” of the leading symbol indicates that the vector is defined with respect to coordinate frame (xyz) j. Fur-
thermore, given a point ja, its transformation, ka, is represented by the matrix product ka =k A j

ja, where kA j

is a 4×4 matrix defining the position and orientation. Note that the same notation rules are also applied to
the unit directional vector, i.e. jn = [nx ny nz 0]T .

2. CUTTING EDGE OF BALL-END CUTTER

This section derives a model for the ideal cutting edge curve of a ball-end cutter. The cutting edge curve
(see Fig. 1) can be expressed as

r = [rx ry rz 1]T = [RCθCϕ RCθSϕ RSθ 1]T , (1)

where C and S denote cosine and sine, respectively. R is the radius of the ball surface.
The variation of a helical edge curve is generally expressed as a function of the helix angle, β . For the

case of orthogonal helicoids, the cutting edge can be expressed as

r = [rx ry rz 1]T =
[
RZCϕ RZSϕ

pz

2π
ϕ1
]T

, (2)

where pz is the pitch of the helix.
From Eqs. (1) and (2), the following relationship is obtained:

Sθ = kϕ, (3)
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Fig. 1. Cutting edge of ball-end cutter.

where 0≤ ϕ ≤ tanβ0,k = 1/ tanβ0 and β0 is the initial helix angle.
Thus, the normal helix cutting edge on the ball surface can be expressed as

r = [rx ry rz 1]T =
[
RCϕ

√
1− (kϕ)2 RSϕ

√
1− (kϕ)2 Rkϕ 1

]T
. (4)

As a result, the unit tangent vector, t, is given by

t =
1√

(1− (kϕ)2)2 + k2

[
(k2

ϕ
2Sϕ− k2

ϕCϕ−Sϕ)− (k2
ϕ

2Cϕ + k2
ϕSϕ−Cϕ)k

√
1− (kϕ)20

]T
. (5)

The helix angle is the angle between the tangential vector of the helix and the tangential vector of the
longitudinal axis of the ball surface (rθ ). In other words, the helix angle can be obtained via the following
dot product:

Cβ =
t · rθ

‖t‖‖rθ‖
, (6)

where

rθ =
∂r
∂θ

= [−RSθCϕ −RSθSϕ RCθ 0]T .

From Eq. (6) the helix angle on the ball surface can be simplified as

β =C−1

(
k√

(1− k2ϕ2)2 + k2

)
. (7)

3. RAKE FACE MATHEMATICAL MODEL

This section derives a mathematical model for producing the helical cutting edge on the rake face of a
ball-end cutter with a constant normal rake angle γn using a conical grinding wheel.

Referring to Fig. 2, the coordinates of any point on line po pi can be expressed in terms of coordinate
system (xyz)2 as follows:

2S =


R
√

C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ)− `CΩ1

R
√

1− (kϕ)2S(ε +ϕ)− `SΩ1

0

1

 , (8)
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Fig. 2. Coordinate systems of interest when grinding rake surface of ball-end cutter.

where ` is the grinding depth, i.e., the distance between points po and pi. The grinding depth varies as the
following function of the longitudinal angle ϕ:

`= δmax +δ0−δ0

(
δmax

δ0

)kϕ

, (9)

where δ0 and δmax are the minimum and maximum grinding depths, respectively.
The pose of the grinding wheel with respect to frame (xyz)2 can be expressed as

2At = Trans(λ1,λ2,0)Rot(z,Ω1)Trans(λ3,0,0)Rot(z,180), (10)

where

λ1 = 0′p0 = R
√

C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ), λ2 = 00′ = RzS(ε +ϕ) = R
√

1− (kϕ)2S(εϕ),

and
λ3 = 0t p0 = (R1− `).

Equation (10) can be expressed in the following matrix form:

2At =


−CΩ1 0 −SΩ1 λ3CΩ1 +λ1

−SΩ1 0 CΩ1 λ3SΩ1 +λ2

0 1 0 0

0 0 0 1

 . (11)
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In order to grind the rake face, it is necessary to define the configuration of the tool frame (xyz)t relative to
the ball-end cutter frame (xyz)0, i.e.,

0At = 0A1
1A2

2At = Rot(z0,−ε)Rot(y1,−Λ) 1A2 (12)

=


−CεCΛCΩ1−SεSΩ1 −CεSΛ −CεCΛSΩ1 +SεCΩ1

SεCΛCΩ1−CεSΩ1 SεSΛ SεCΛSΩ1 +CεCΩ1

−SΛCΩ1 CΛ −SΛSΩ1

0 0 0

[(R1− `)(CΩ1 +R
√

C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ)]CεCΛ+[(R1− `)SΩ1 +R
√

1− (kϕ)2S(ε +ϕ)]Sε

−[(R1− `)CΩ1 +R
√

C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ)]SεCΛ+[(R1− `)SΩ1 +R
√

1− (kϕ)2S(ε +ϕ)]Cε

[(R1− `)CΩ1 +R
√

C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ)]SΛ

1


The rake face can be expressed in the ball-end cutter frame (xyz)0 via the following coordinate transforma-
tion:

0S = 0A1
1A2

2S (13)

=


−SεCΛ[R

√
C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ)− `CΩ1]+Sε[R

√
1− (kϕ)2S(ε +ϕ)− `SΩ1

−SεCΛ[R
√

C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ)− `CΩ1]+Cε[R
√

1− (kϕ)2S(ε +ϕ)− `SΩ1

SΛ[R
√

C2(ε +ϕ)+ k2ϕ2S2(ε +ϕ)− `CΩ1]

1

 .
It is noted in Eq. (13) that three angular parameters (ε,Λ and Ω1) are undetermined. Parameter ε at point

p between the tangent vector of the cutting edge and the x0 axis is given as

cos
(

π

2
− ε

)
=

t · y0

‖t‖‖y0‖
=−(k2ϕ2Cϕ + k2ϕSϕ−Cϕ)√

(1− (kϕ)2)2 + k2
. (14)

Equation (14) can be simplified as

ε = S−1

(
−(k2ϕ2Cϕ + k2ϕSϕ−Cϕ)√

(1− (kϕ)2)2 + k2

)
. (15)

In Fig. 2a, segments 0p0,00′ and 0′p0 have lengths of Rz,RzS(ε +ϕ) and
√

R2−002, respectively. Thus,
parameter Λ in Eq. (13) can be determined via the relationship

0p0C(ε +ϕ) = 0′p0CΛ. (16)

In other words, parameter Λ can be expressed as

Λ =C−1

( √
1− (kϕ)2C(ε +ϕ)√

C2(ε +ϕ)+(kϕ)2S2(ε +ϕ)

)
. (17)

Note that the third underdetermined parameter in Eq. (13), i.e., the rotational angle Ω1, is derived in Sec-
tion 5.
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Fig. 3. Coordinate systems of interest when grinding rake surface of ball-end cutter.

4. FLANK FACE MATHEMATICAL MODEL

This section derives a mathematical model for producing the flank face of a ball-end cutter with a constant
clearance angle α using a conical grinding wheel.

Referring to Fig. 3, the pose of the grinding wheel with respect to frame (xyz)4 can be expressed as

4At = Trans(λ1,0,0)Rot(z,Ω1)Trans(0,−λ2,0)Rot(x,−90). (18)

As shown in Fig. 4, parameters λ1 and λ2 in Eq. (18) are given by the following trigonometric functions:

λ1 = 0U = R+(R1−hcotρ)/CΩ2 (19)

λ2 = otU = h− (R1−hcotρ) tanΩ2 (20)

To grind the flank face, it is necessary to define the configuration of the tool frame (xyz)t with respect to
the ball-end cutter frame (xyz)0, i.e.,
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Fig. 4. Geometric relationships of interest when grinding flank surface of ball-end cutter.

0At = 0A3
3A4

4At = Rot(z,ϕ)Rot(y,−θ)3A4 (21)

=


−CϕCθCΩ2 +SϕSΩ2 −Sϕ CϕCθSΩ2 +SϕCΩ2

−SϕCθCΩ2−CϕSΩ2 Cϕ SϕCθSΩ2−CϕCΩ2

−SθCΩ2 0 SθSΩ2

0 0 0[
(h− (R1−hcotρ) tanΩ2)SΩ2 +

(
R+ (R1−hcotρ)

CΩ2

)]
CϕCθ +[(h− (R1−hcotρ) tanΩ2)]CΩ2Sϕ[

(h− (R1−hcotρ) tanΩ2)SΩ2 +
(

R+ (R1−hcotρ)
CΩ2

)]
SϕCθ − [(h− (R1−hcotρ) tanΩ2)]CΩ2Cϕ[

(h− (R1hcotρ) tanΩ2)SΩ2 +
(

R+ (R1−hcotρ)
CΩ2

)]
Sθ

1


where Cθ =

√
1− (kϕ)2 and Sθ = kϕ

In Eq. (21) the clearance angle α , rotational angle Ω2 and conical angle of the grinding wheel ρ are
related via the following expression:

Ω2 =
π

2
−ρ−α. (22)

The coordinates of any point on line po pi in Fig. 3 can be expressed as

4S = [R− `a Sα− `a#Cα 0 1]T , (23)

where 0≤ `a ≤ d, in which d is the width of the flank surface
The flank surface of the ball-end cutter can be obtained in the ball-end cutter frame as follows:

0S =0 A3
3A4

4S = [CϕCθ(R− `aSα)+Sϕ(`aCα)SϕCθ(R− `aSα)−Cϕ(`aCα)Sθ(R− `aSα) 1]T . (24)

(Note that readers with an interest in generating the NC equations required to produce specific ball-end
cutters using a CNC tool-grinding machine are referred to Hsieh and Lin [7] for a detailed description.)

781Transactions of the Canadian Society for Mechanical Engineering, Vol. 37, No. 3, 2013



Fig. 5. Schematic illustration of cutting edge inclination angle.

5. CUTTING ANGLES

This section derives mathematical expressions for the cutting edge inclination angle, cutting edge angle and
normal rake angle of the ball-end cutter considered in the preceding sections

The cutting edge inclination angle (λ ) is the angle between the unit tangent vector t of the cutting edge
and the tool reference plane pr (see Fig. 5) and can be determined mathematically as follows:

cos
(

π

2
−λ

)
= t ·npr, (25)

where npr = [−Sϕ Cϕ 0 0]T is the normal vector of plane pr.
The cutting edge angle (κr) is the angle between the feed motion vector (i.e., the z0 axis of the ball-end

cutter frame (xyz)O) and the projection vector of the cutting edge on plane pr. The cutting edge angle can
be determined as

cosκr =
rθ · z0

|rθ | |z0|
=
√

1− (kϕ)2. (26)

Points po, pi and s in Fig. 6 can be expressed in coordinate system (xyz)2 as follows:

2 po = [
√

R2−R2
z S2(ε +ϕ) RzS(ε +ϕ) 0 1]T (27)

2 pi][RSΛ 0 RCΛ 1]T (28)

2 pi = [
√

R2−R2
z S2(ε +ϕ)− `CΩ1 RzS(ε +ϕ)− `SΩ1 0 1]T . (29)

Consequently, the normal vector of the reference plane pr is given by

2npr = [CΛ H −SΛ 0]T , (30)

where

H =
−
√

C2(ε +ϕ)+(kϕ)2S2(ε +ϕ)CΛ√
1− (kϕ)2S(ε +ϕ)

.

The direction of line po pi is given by (see Fig. 2)

2nLi = [`CΩ1 `SΩ1 0 0]T . (31)
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Fig. 6. Schematic illustration of normal rake angle.

By convention, the normal rake angle is defined as

C
(

π

2
− γn

)
=
|2npr ·2 nL|
|2npr| |2nL|

. (32)

Substituting Eqs. (30) and (31) into (32), the normal rake angle γn is obtained as

Sγn =

(
CΛCΩ1 +HSΩ1√

1+H2

)
. (33)

Assuming that γn is a constant, the rotational angle Ω1 (i.e., the third underdetermined parameter in Eq. (13))
is determined by

Ω1 = S−1

(√
1+H2Sγn√
H2 +C2Λ

)
− tan−1

(
CΛ

H

)
. (34)

6. NUMERICAL EVALUATION

In this study, the validity of the mathematical model developed in the previous sections was verified by
means of numerical simulations using parameter settings of R = 6,γn = 30◦, and β0 = 30◦ or β0 = 36◦. As
expected, Fig. 7 shows that the cutting edge inclination angle reduces from the bottom of the ball to the top
of the ball. Meanwhile, Fig. 8 shows that the cutting edge angle increases from the bottom of the ball to the
top of the ball. Observation of Figs. 7 and 8 shows that the effect of a higher value of β0 has a larger cutting
edge inclination angle and a small cutting edge angle, respectively.

7. CONCLUSIONS

This paper has developed a general mathematical model of a ball-end cutter. In developing the model, it has
been assumed that the rake face has a constant normal rake angle and the flank face has a constant orthogonal
clearance angle. Mathematical expressions for the pose of the grinding wheel with respect to the workpiece
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Fig. 7. Variation of cutting edge inclination angle along cutting edge.

Fig. 8. Variation of cutting edge angle along cutting edge.

during the grinding process have also been derived. Thus, the methodology presented in this study provides
a suitable basis for deriving the NC equations required to machine specific ball-end cutters using a CNC
tool-grinding machine.
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