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ABSTRACT
An effective and inexpensive volumetric error measurement method is an essential of the software-based
error compensation method that can improve the machining accuracy of a CNC machine tool without in-
creasing hardware manufacturing cost. In this paper, a new volumetric-error measurement method incor-
porating of three derived error models, two-step measurement procedure, and use of telescoping ball-bar
was proposed for three major types of five-axis machine tools. Comparing to the methods currently used
in industry, the proposed method provides the advantages of low cost, easy setup, and high efficiency. The
simulation and experimental results have shown the feasibility and effectiveness of the method.

Keywords: error measurement; volumetric error; degree-of-freedom; five-axis machine tool.

ÉTUDE D’UNE NOUVELLE MÉTHODE DE MESURE D’ERREURS VOLUMÉTRIQUES PEU
COÛTEUSE POUR UNE MACHINE-OUTILÀ CINQ AXES

RÉSUMÉ
Une méthode efficace et peu coûteuse de mesure d’erreurs volumétriques est essentielle pour un logiciel de
compensation d’erreurs qui peut améliorer l’efficacité d’une machine-outil CNC sans accroître le coût du
matériel de production. Dans cet article, une nouvelle méthode de mesure d’erreurs volumétriques incor-
porant trois modèles dérivés, une procédure de mesure en deux étapes, et l’utilisation d’une barre à bille
télescopique, a été proposé pour trois types principaux de machine-outil à cinq axes. En comparaison avec
les méthodes actuellement utilisées dans l’industrie, la machine proposée a l’avantage d’être peu coûteuse,
facile à installer, et de grande efficacité. Les résultats de simulation et d’expériences ont démontrés la faisa-
bilité et l’efficacité de la méthode.

Mots-clés : mesure d’erreur ; erreur volumétrique ; degré-de-liberté ; machine-outil à cinq axes.
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1. INTRODUCTION

Due to the development of modern industry, in-use precision five-axes machine tools have increased over
triple, and the application for industrial circles have significantly increased. Because of the tight tolerance
of products, in addition to the degrees of freedom for machining, the machining accuracy is the key factor
to show the capability and possible application of a five-axis machine tool. Volumetric error compensation
technique has been recognized as an effective way to further improve the accuracy of multi-axis machine
tools. In error compensation process, knowing the values of errors prior to compensation is necessary. Thus,
a method that can effectively determine volumetric errors of a five-axis machine tool is an essential of the
error compensation technique. The existing measurement method requires an expensive instrument and has
complex measurement process. In this study, a volumetric error measurement method with characteristics
of low cost, easy setup, and high efficiency was developed for five-axis CNC machine tools.

Many researches had been carried out for machine accuracy tests. Bryan [1, 2] developed the magnetic
ball-bar to obtain the total position error of a machine at various points. Although the test was not complete
for all types of errors, it was quick and easy to perform, and gives good estimates for some of the error
components. Two versions of the Magnetic Ball Bar [MBB] and a simple method for testing coordinate
measuring machines and machine tools have been developed at the Lawrence Livermore National Labora-
tory. The method was intended to replace the circular comparison standard of the circular test for machine
tools. Compared with the standard discs used in the circular tests, the MBB is more cost effective, easier
to use, and more accurate. Based on the assumption that machines were rigid bodies, Ehmann [3] used
Homogeneous Transformation Matrix to develop geometry error models for multi-axis machines. Kiridena
and Ferreira [4] used HTM to build individual mathematics model of geometry errors for common five-axis
mechanism. In order to enhance the accuracy of high speed machining, Cao et al. [5] investigated the varia-
tions of interference fit and bearing preload condition induced by centrifugal expansion deformations at high
speed. With consideration of the centrifugal expansion deformation, a dynamic model of high-speed rolling
ball bearings was presented with experimental validation. On the basis of the statistics of the relation of
selection and theoretical variances, Hajiyev [6] proposed a new structure and algorithmic provision of con-
tinuously operated measurement system with the error self-correction which allows to detect the changes
in the statistical characteristics of errors. Erkan et al. [7] presented a cluster approach to the analysis of
volumetric error for five-axis machine tools. Lei et al. [8] proposed a reduced error model which describes
the influence of each unknown and not measurable link error on the overall position errors of a five-axis
machine tool, and developed a probe-ball device which can measure the overall position errors of five-axis
machine tools directly. Based on the reduced model and the overall position errors, the link errors can be
estimated accurately with the least square estimation method. Sakamoto [9] used double ball-bar (DBB) to
measure geometry errors for five-axis machine, and found the values of individual error by the inference of
mathematics error model of measurement.

Most of the published measurement methods were aimed at measuring error components of an individual
axis of motion that are subsequently used in association with the machine error models to evaluate the
volumetric errors. However, these measurements cannot be directly used for error compensation. Based
on the assumption that points in machine’s workspace located close to each other exhibit the same total
position errors, Wang [10, 11] developed the single socket method (SSM). By using ball-bar, the method
provides the capability of directly measuring the total position errors of a machine at discrete points in its
workspace. The measurements can be directly used for cutting trajectory error compensation. However, the
method is still unable to identify the orientation errors of a five-axis machine tool. To perform the error
compensation for a five-axis machine, both of the total position errors and orientation errors of the machine
need to be determined. Most current measurement techniques for five-axis machines are only for single axis
calibration, and usually require expensive measurement instruments, such as laser measurement equipment
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etc. In addition, it is usually very time-consuming for instrument setup for continuously measuring the
machine errors when the machine moves with 5-DOF motion. In this study, with extending the previous
research outcome-SSM, a new volumetric errors measurement method incorporating with error models and
the two-step measurement procedures, was developed for the three major types of five-axis machine tools.
Errors measured with this method can be directly used for error compensation [12]. The instrument used
in this method is a telescoping ball bar system which is much cheaper than other precision measurement
instrument. Thus, the proposed method offers the advantages of low cost, easy setup, and high efficiency
for implementation in industry.

In this paper, the measurement principle and the error models for the three types of five-axis machines
were presented in Section 2. The algorithm and measurement procedure of the method were addressed
in Section 3. In Section 4, both the simulation analysis and experimental results were discussed. Finally,
conclusions were given in Section 5.

2. MEASUREMENT PRINCIPLE

Five-axis machine tools compose of three translation axes (T) and two rotating axes (R). According to the
configuration of machine, three major types of five-axis machine tools (Fig. 1) are widely used for industry:
(a) RRTTT type – two rotational axes attached to the machine spindle and three translational axes for the
movements of table and spindle housing; (b) TTTRR type – three translational axes (x,y, and z axis) for the
movements of table and spindle housing, and two rotational axes attached to the table; (c) RTTTR type –
one rotational axis attached to machine spindle, three translational axes (x, y, and z axis) for the movements
of table and spindle housing, and one rotational axis attached to the table. The volumetric errors of five-axis
machine tools include three total position errors and two rotation errors.

To measure the volumetric errors of a five-axis machine tool, the 5-DOF movement of the machine is
divided into two consecutive movements: a 3-DOF translation and a 2-DOF rotation. Firstly, the machine
moves for the translation movement, and SSM is used to measure the total position errors at this location.
Then, the machine moves for the rotation movement, and SSM is again used to measure the total position
errors at this location. The errors measured at this location are the total position errors caused by the 5-DOF
movements. Finally, the orientation errors of the machine can be determined by substituting the two sets of
total position errors into the derived orientation error models.

2.1. Error Models
2.1.1. Total position error models
Figure 2 shows the fundamental concept of SSM [6, 7]. When a reference point (x0,y0,z0) is selected, total
position errors (∆x,∆y,∆z) at point (xP1,yP1,zP1) can be determined by

 ∆x
∆y
∆

=

 xP1− x0 yP1− y0 zP1− z0

xP2− x0 yP2− y0 zP2− z0

xP3− x0 yP3− y0 zP3− z0


−1  ln,1 ·∆l1

ln,2 ·∆l2
ln,3 ·∆l3

 , (1)

where (xP2,yP2,zP2) and (xP3,yP3,zP3) are the coordinates of the two neighboring points. ln,i and ∆li(i =
1,2,3) respectively represent the nominal distance and distance error between (x0,y0,z0) and the three points,
(xP1,yP1,zP1), (xP2,yP2,zP2), and (xP3,yP3,zP3). The distance error ∆li(i = 1,2,3) can be directly measured
with use of ball-bar. Equation (1) is the total position error model. It can be used to determine the total posi-
tion errors of a multi-axis machine tool with the advantages of low cost, easy setup, and quick measurement.
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Fig. 1. Schematic of three types of five-axis machine tools.

Fig. 2. The fundamental concept of single socket method.

2.1.2. Orientation error models
With use of differential homogeneous transformation matrix method, the orientation error models that
can fast determine the rotation errors of a machine were derived for the three types of five-axis machine tools.

2.1.2.1. Error model for a RRTTT-type machine tool. With respect to the global machine coordinate frame
(x,y,z)m, the RRTTT machine can move along the x-, y- and z-axis, and the machine spindle can simul-
taneously rotate about the x-axis and y-axis. When the machine moves along x-, y- and z-axis for xm,ym,
and zm, and the machine spindle rotates about x-axis for an angle of α and about y-axis for an angle of β ,
the nominal coordinate of the tool tip, [P]M,Nominal

1 , with respect to the global machine coordinate frame,
(x,y,z)m, can be expressed with homogeneous transformation matrix as

[P]M,Nominal
1 = TxyzTαTβ [P]S, (2)

where [P]S = [0 0 zr 1]T represents the coordinates of tool tip with respect to the coordinate frame of the
spindle, (x,y,z)s. Txyz represents the homogeneous transformation matrix of (x,y,z)s w.r.t. (x,y,z)m and can
be expressed as

Txyz = Tran(xm,xs)Tran(ym,ys)Tran(zm,zs). (3)

Tα and Tβ represent the homogeneous transformation matrix of the two rotation movements of the spindle
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w.r.t. (x,y,z)m. When errors exist, the homogeneous transformation matrix becomes

[P]M,Actual
1 =


1 0 0 x1 +∆xV 1

0 1 0 y1 +∆yV 1

0 0 1 z1 +∆zV 1

0 0 0 1




1 0 0 0

0 cos(α +∆α) −sin(α +∆α) 0

0 sin(α +∆α)cos(α +∆α) 0

0 0 0 1



×


cos(β +∆β ) 0 sin(β +∆β ) 0

0 1 0 0

−sin(β +∆β ) 0 cos(β +∆β ) 0

0 0 0 1




0

0

zr

1



=


x1 +∆xV 1 + zr sin(β +∆β )

y1 +∆yV 1− zr cos(β +∆β )sin(α +∆α)

z1 +∆zV 1 + zr cos(α +∆α)cos(β +∆β )

1

 . (4)

Equation (4) can also be expressed as

[P]M,Actual
1 =


x2

y2

z2

1

+


∆xV 2

∆yV 2

∆zV 2

1

=


x2 +∆xV 2

y2 +∆yV 2

z2 +∆zV 2

1

 . (5)

In Eqs. (4) and (5), x2,y2, and z2 are the coordinates of the nominal position of the tool tip w.r.t. (x,y,z)m after
5-DOF movements is made. ∆xV 1,∆yV 1, and ∆zV 1 represent the total position errors of the tool tip caused by
the three translational movements w.r.t. (x,y,z)s. (∆xV 2,∆yV 2,∆zV 2) and (∆α,∆∆) are respectively the total
position and orientation errors of the machine at the final position (x2,y2,z2).

By converting the cosine and sine terms in Eqs. (4) and (5) to Taylor extension series, and neglecting the
higher order terms, the orientation errors can be obtained as

∆β =−sec(β )(x1− x2 +∆xV 1−∆xV 2 + zr sin(β ))
zr

, (6)

∆α =
(−y1 + y2−∆yV 1 +∆yV 2)cos(α)+(−z1 + z2−∆zV 1 +∆zV 2)sin(α)

(z1− z2 +∆zV 1−∆zV 2)cos(α)+(−y1 + y2−∆yV 1 +∆yV 2)sin(α)
. (7)

Using Eqs. (6) and (7), when ∆xV 1,∆yV 1,∆zV 1,∆xV 2,∆yV 2, and ∆zV 2 are measured by SSM (Eq. (1)), the
orientation errors of the cutter can be determined.

2.1.2.2. Error model for TTTRR-type machine tools. For a TTTRR machine tool, the machine table can
simultaneously rotate about x-axis and z-axis. The two rotation centers locate at different locations, and
there is a fixed z-direction distance between the two centers. With the similar derivative process described
in previous section, the nominal coordinates of a reference point set on the machine table with respect to the
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coordinate frame, (x,y,z)m, can be expressed as

[P]M,Nominal
2 = Txyz Tα Tz′ Tγ [P]Rz

=


1 0 0 x1

0 1 0 y1

0 0 1 z1

0 0 0 1




1 0 0 0

0 cos(α) −sin(α) 0

0 sin(al pha) cos(α) 0

0 0 0 1



×


1 0 0 0

0 1 0 0

0 0 1 zαγ

0 0 0 1




cos(γ) −sin(γ) 0 0

sin(γ) cos(γ) 0 0

0 0 1 0

0 0 0 1




xr

yr

zr

1

 , (8)

where [P]Rz = [xr yr zr 1]T represents the coordinates of the reference point with respect to the coordinate
frame set at the rotation center on z-axis. Txyz(= Tran(xm,xb)Tran(ym,yb)Tran(zm,zb)) is the homogeneous
transformation matrix of (x,y,z)b w.r.t. (x,y,z)m, and the coordinate frame of machine table is set at the
rotation center on x-axis. Tz, represents the homogeneous transformation matrix between the frames at the
rotation center on z-axis and at the rotation center x-axis. Tα and Tγ are the homogeneous transformation
matrices for the two rotational movements. α and γ are the rotational angles about the x-axis and z-axis,
respectively.

Based on Eq. (8), when errors exist, the actual coordinates of reference point w.r.t. (x,y,z)m become

[P]M,Actual
2 =


1 0 0 x1 +∆xV 1

0 1 0 y1 +∆yV 1

0 0 1 z1 +∆zV 1

0 0 0 1




1 0 0 0

0 cos(α +∆α) −sin(α +∆α) 0

0 sin(α +∆α) cos(α +∆α) 0

0 0 0 1

 (9)

×


1 0 0 0

0 1 0 0

0 0 1 zαγ

0 0 0 1




cos(γ +∆γ) −sin(γ +∆γ) 0 0

sin(γ +∆γ) cos(γ +∆γ) 0 0

0 0 1 0

0 0 0 1




xr

yr

zr

1



=


x1 +∆xV 1 + xr cos(γ +∆γ)− yr sin(γ +∆γ)

y1 +∆yV 1 + xr cos(α +∆α)sin(γ +∆γ)+ yr cos(α +∆α)cos(γ +∆γ)− (zr + zαγ sin(α +∆α)

z1 +∆zV 1 + xr sin(α +∆α)sin(γ +∆γ)+ yr cos(γ +∆γ)sin(α +∆α)+(zr + zαγ)cos(α +∆α)

1


Assume that

[P]M,Actual
2 =


x2 +∆xV 2

y2 +∆yV 2

z2 +∆zV 2

1

 . (10)

In Eqs. (9) and (10), (x2,y2,z2) are the nominal coordinates of the reference point w.r.t. (x,y,z)m after the
5-DOF movements are made. (∆xV 2,∆yV 2,∆zV 2) and (∆α,∆γ) are the total position and orientation errors of
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the machine w.r.t. (x,y,z)m caused by the 5-DOF movements. (∆xV 1,∆yV 1,∆zV 1) are the total position errors
of the machine w.r.t. (x,y,z)b. They are caused by the three translational movements, and can be directly
measured by SSM by setting the reference point on the machine table. Converting the cosine and sine terms
in Eqs. (9) and (10) to Taylor extension series and neglecting the higher order terms, the orientation errors
can be expressed as

∆γ =
x1 + x2 +∆xV 1−∆xV 2 + xr cos(γ)− yr sin(γ)

yr cos(γ)+ xr sin(γ)
, (11)

∆α =
(y1− y2 +∆yV 1−∆yV 2− (zr + zay)sin(α))(yr cos(γ)+ xr sin(γ))+ cos(α)(x2

r + y2
r +(x1− x2 +∆xV 2)(xr cos(γ)− yr sin(γ)))

(zr + zαγ )cos(α)(yrcos(γ)+ xr sin(γ))+ sin(α)(x2
r + y2

r +(x1− x2 +∆xV 2)(xr cos(γ)− yr sin(γ)))
.

(12)

Using Eqs. (11) and (12), when the total position errors ∆xV 1,∆yV 1,∆zV 1,∆xV 2,∆yV 2, and ∆zV 2 are
determined by SSM, the orientation errors can be calculated.

2.1.2.3 Error Model for a RTTTR-type machine tool. For a RTTTR five-axis machine tool, the machine
spindle and the machine table can rotate about y-axis and x-axis, respectively. Using the homogeneous
transformation matrix, when the machine spindle makes 4-DOF movements, the nominal coordinate of the
tool tip w.r.t. (x,y,z)m can be expressed as

[P]M,Nominal
3 = Txyz Tβ [P]

S = Tran(xm,xs)Tran(ym,ys)Tran(zm,zs)Rot(ym,β )[P]S, (13)

where [P]S = [0 0 zr 1]T represents the coordinates of tool tip w.r.t. (x,y,z)s. Txyz represents the homogeneous
transformation matrix between the coordinate frame (x,y,z)s and (x,y,z)m, and Tβ is the homogeneous trans-
formation matrix representing the rotation about y-axis w.r.t. (x,y,z)m. β is the rotation angle at machine
spindle.

After making 4-DOF movements, the nominal coordinate of the reference point set on the machine table
w.r.t. (x,y,z)m can be expressed as

[P]M,Nominal
3 = TxyzTα [P]B = Tran(xm,xb)Tran(ym,yb)Tran(zm,zb)Rot(xm,α)[P]B, (14)

where [P]B = [xtrytrztr1]T represents the nominal coordinate of the reference point w.r.t. (x,y,z)b after three
translation movements are made. Txyz is the homogeneous transformation matrix between the coordinate
frames (x,y,z)b and (x,y,z)m. Tα is the homogeneous transformation matrix for the rotation movement of
the machine table.

With the similar derivation addressed in the previous sections, when errors exist, Eq. (13) becomes

[P]M,Actual
3 =


x1 +∆xV 1 + zr sin(β +∆β )

y1 +∆yyV 1

z1 +∆zV 1 + zr cos(β +∆β )

1

=


x2 +∆xV 2

y2 +∆yV 2

z2 +∆zV 2

1

 , (15)

where [P]M,Actual
3 is the actual coordinate of the tool tip. (x2,y2,z2) and (∆xV 2,∆yV 2,∆zV 2) are respectively the

nominal coordinates and the total position errors of the tool tip w.r.t. (x,y,z)m after 4-DOF movements are
made. (∆xV 1,∆yV 1,∆zV 1) are the total position errors of the tool tip w.r.t. (x,y,z)s after the three translational
movements are made. ∆β is the orientation error of the machine spindle. When errors exist, Eq. (14)

835Transactions of the Canadian Society for Mechanical Engineering, Vol. 37, No. 3, 2013



becomes

[P]M,Actual
3 =


xt1 +∆xtV 1 + xtr

yt1 +∆ytV 1 + ytr cos(α +∆α)− ztr sin(α +∆α)

zt1 +∆ztV 1 + ytr sin(α +∆α)+ ztr cos(α +Deltaα)

1

=


xt2 +∆xtV 2

yt2 +∆ytV 2

zt2 +∆ztV 2

1

 , (16)

where [P]M,Actual
t3 is the actual coordinate of reference point. (xt2,yt2,zt2) and (∆xt2,∆yt2,∆zt2) are respec-

tively the nominal coordinate and the total position errors of the reference point w.r.t. (x,y,z)m after the
4-DOF movements are made. (∆xtV 1,∆ytV 1,∆ztV 1) are the total position errors of the reference point w.r.t.
(x,y,z)b after the three translation movements are made. (∆xt2,∆yt2,∆zt2) and ∆α are respectively the trans-
lation and orientation errors of the machine table.

Converting the cosine and sine terms to Taylor extension series and neglecting the higher order terms, the
orientation error of the machine spindle (∆β ) and the orientation error of reference point on the machine
table (∆α) can be expressed as

∆β =−sec(β )(x1− x2 +∆xV 1−∆xV 2 + zr sin(β ))
zr

, (17)

∆α =
yt1− yt2 +∆ytV 1−∆ytV 2 + ytr cos(α)− ztr sin(α)

ztr cos(α)+ ytr sin(α)
. (18)

The variables, (x1,y1,z1),(x2,y2,z2),(xt1,yt1,zt1),(xt2,yt2,zt2), zr,ztr,α and β , are known value when
the machine is driven. With use of the single socket method, total position errors (∆xV 1,∆yV 1,∆zV 1),
(∆xV 2,∆yV 2,∆zV 2) of the tool tip can be directly measured. (∆xtV 1,∆ytV 1,∆ztV 1) and (∆xtV 2,∆ytV 2,∆ztV 2)
can also be directly measured at the reference point. After substituting all the errors into Eqs. (17) and (18),
the orientation errors (∆α and ∆β ) of the machine can be determined.

3. THE TWO-STEP MEASUREMENT PROCEDURE

According to the derived error models, it is noted that the orientation errors of a five-axis machine tool are
functions of the two sets of total position errors: (1) the total position errors measured after three translational
movements are made; (2) the total position errors measured after the 2-DOF rotation are made. Thus, a two-
step measurement procedure incorporating with SSM was developed for determination of the two sets of
total position errors. For a RRTTT-type five-axis machine tool, the measurement procedure is:

1. Set the magnetic centre mount on machine bed, and install ball-bar to the machine. The end of ball-bar
attached to machine table is the reference point.

2. Move machine spindle to the first location with three translational movements.

3. Use SSM to determine the total position errors occurring at the first location, i.e. (∆xV 1,∆yV 1,∆zV 1)
in Eq. (6).

4. Move machine spindle to the second location with two rotational movements.

5. Use SSM to determine the total position errors occurring at the second location, i.e. (∆xV 2,∆yV 2,∆zV 2)
in Eq. (7).

6. Determine the orientation errors ∆α and ∆β with substituting the two sets of total position errors into
Eqs. (8) and (9).
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For a TTTRR-type five-axis machine tool, the measurement procedure is similar to the procedure for
the RRTTT-type machine except that the end of the ball-bar mounted on the machine spindle should be
the reference point. Since the two rotation movements are made by the turning table, the orientation er-
rors occur at the turning table. By substituting the measured total position errors, (∆xV 1,∆yV 1,∆zV 1) and
(∆xV 2,∆yV 2,∆zV 2), into Eqs. (13) and (14), orientation errors, ∆α and ∆γ can be determined.

For a RTTTR-type five-axis machine tool, because the machine spindle and machine table can separately
make 1-DOF rotation, the two orientation errors should be determined separately. The measurement proce-
dure for orientation error ∆β is:

1. Set the magnetic center mount on machine bed, and install ball-bar on the machine as regular setup.

2. Move machine spindle to the first location with three translational movements.

3. Use SSM to measure the total position errors at the first location, i.e. (∆xV 1,∆yV 1,∆zV 1) in Eq. (17).

4. Rotate machine spindle to the second location.

5. Set reference point on the turning table, and use SSM to measure the total errors at the second location,
i.e. (∆xV 2,∆yV 2,∆zV 2) in Eq. (17).

6. Determine the orientation errors ∆β by substituting (∆xV 1,∆yV 1,∆zV 1),(∆xV 2,∆yV 2,∆zV 2) into
Eq. (19).

The measurement procedure for orientation error ∆α is:

1. Set the magnetic center mount on machine bed, and install ball-bar on the machine as regular setup.

2. Move the turning table to the first location with three translational movements.

3. Use SSM to determine the total errors occurring at the first location, i.e. (∆xtV 1,∆ytV 1,∆ztV 1) in
Eq. (18).

4. Rotate the turning table to the third location.

5. Set the reference point on the machine spindle, and use SSM to measure the total errors
(∆xtV 2,∆ytV 2,∆ztV 2) at the third location in Eq. (18).

6. Determine the orientation errors ∆α by substituting (∆xtV 1,∆ytV 1,∆ztV 1), (∆xtV 2,∆ytV 2,∆ztV 2) into
Eq. (20).

To enhance the convenience of use of the proposed measurement method for industry, a computer-aided
measurement system integrated with a ball-bar system was developed in Matlab language based on the
proposed error models and measurement procedures.

4. SIMULATION AND EXPERIMENTAL ILLUSTRATIONS

To verify the proposed measurement method, both computer simulation and experiments were conducted.
In the simulation, a RRTTT-type five-axis machine tool was selected. The total length of spindle and

cutter was 250 mm (i.e. the radius of rotation). Several 5-DOF movements were planned for verification.
Each movement was composed of three translations in x,y, and z direction and two rotations about the x-
and y-axis (rotation angles: α , β ). All movements have the same translations as x-travel: –50 mm, y-
travel: –15 mm, and z-travel: 250 mm. Different rotation combinations and nominal orientation errors were
selected:
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Table 1. The simulation results of measuring volumetric errors for a RRTTT-type five-axis machine tool.

1. α = 30◦, β = 0◦, ∆α = 0.1◦ and ∆β = 0◦;

2. α = 0◦, β = 40◦, ∆α = 0◦ and ∆β = 0.08◦;

3. α = 45◦, β = 60◦, ∆α = 0.12◦ and ∆β = 0.1◦;

4. α = 60◦, β = 50◦, ∆α = 0.15◦ and ∆β = 0.09◦;

5. α = 30◦, β = 60◦, ∆α = 0.1◦ and ∆β = 0.1◦.

The nominal location after three translations was (−50,−15,500). According to the calculation of ho-
mogeneous transformation matrix and the D–H rule, the nominal locations of the machine spindle (∆x2,
∆y2, ∆z2) after rotations are (−50,110,283.494), (−210.697,−15,308.489), (−266.506,73.388,411.612),
(−241.511,124.168,419.652), and (−266.506,47.5,391.747), respectively. For simplicity, the total posi-
tion errors caused by translational movements were neglected in this simulation. The total position errors of
the machine after rotations were calculated and shown in Table 1. After substituting the total position errors
into Eqs. (8) and (9), the orientation errors, ∆α and ∆β , were obtained (Table 1). It can be seen that the
orientation errors were all very close to the nominal orientation errors. The average difference between the
nominal orientation errors and calculated orientation errors were about 0.0001◦. It proves that the derived
error models are quite accurate.

In the experiments, a TTTRR-type five-axis machining center produced by Dah-Lih Machinery Co. was
used. Four 5-DOF test movements were conducted. Each test movement included a 3-DOF translation
(–49.275 mm along the x-axis; –14.312 mm along the y-axis; and –177.777 mm along the z-axis) and a
2-DOF rotation. Four sets of 2-DOF rotation were set for the experiment: (1) α = 0◦, γ = 30◦; (2) α = 15◦,
γ = 0◦; (3) α = 10◦, γ = 30◦; (4) α = 10◦, γ = 45◦. SSM was used to measure the total position errors of the
machine at different locations. After substituting the measured errors into Eqs. (13) and (14), the orientation
errors were determined. Both of the total position errors and orientation errors were shown in Table 2. The
maximum orientation error, ∆α = −0.0426◦ and ∆γ = 0.0684◦ occurred at α = 0◦, γ = 30◦. It was noted
that ∆γ is larger than ∆α . This is because the driving mechanism of the turning table was damaged before.
The experimental results reflect the facts.
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Table 2. The experimental results of measuring volumetric errors for a TTTRR-type five-axis machine tool.

5. CONCLUSIONS

A new volumetric error measurement method composing of error models, a two-step measurement proce-
dure, and use of SSM was developed for the three major types of five-axis machine tools in this study. The
error models for RRTTT-type, TTTRR-type, and RTTTR-type five-axis machine tools were newly derived.
The two-step measurement procedures were developed for standard operation. Simulation and experiments
were conducted to verify the proposed measurement method. The results have shown good feasibility and
reliability of the proposed method. Without using expensive measurement instrument and complex measure-
ment procedures, the proposed method offers the advantages of low cost, easy set up, and high efficiency
for determining the volumetric errors of five-axis machine tools.
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