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ABSTRACT
Mechanical fault vibration signals are non-stationary, which causes system instability. The traditional meth-
ods are difficult to accurately extract fault information and this paper proposes a local mean decomposi-
tion and least squares support vector machine fault identification method. The article introduces waveform
matching to solve the original features of signals at the endpoints, using linear interpolation to get local
mean and envelope function, then obtain production function PF vector through making use of the local
mean decomposition. The energy entropy of PF vector take as identification input vectors. These vectors
are respectively inputted BP neural networks, support vector machines, least squares support vector ma-
chines to identify faults. Experimental result show that the accuracy of least squares support vector machine
with higher classification accuracy has been improved.

Keywords: vibration signals; features extraction; state recognition; local mean decomposition; least
squares support vector machines.

RECHERCHE SUR LA RECONNAISSANCE DE LA PANNE MÉCANIQUE
BASÉE SUR LMD-LSSVM

RÉSUMÉ
Les signaux de vibration de panne mécanique sont non-stationnaires et entraînent l’instabilité du sys-
tème, et les méthodes traditionnelles peuvent difficilement extraire les informations de défaillances. Cet 
article propose un moyen de décomposition locale, et une méthode d’identification basée sur les moindres 
carrés par une machine à vecteur de support. On introduit la forme d’onde correspondante pour résoudre 
les caractéristiques des signaux aux extrémités par interpolation linéaire afin d’obtenir la décomposition 
et la fonction de l’enveloppe, pour ensuite obtenir la fonction de production du vecteur PF, en utilisant la 
décomposition modale locale. L’entropie d’énergie de vecteur PF prend les vecteurs d’entrée comme identi-
fication. Ces vecteurs sont respectivement entrés comme des réseaux neuronaux BP, et la machine à 
vecteur de support pour l’identification basée sur les moindres carrés pour identifier les défaillances. Les 
résultats expérimentaux démontrent que l’efficacité de l’identification des moindres carrés par la machine 
à vecteur de support avait apporté une plus grande exactitude de la classification

Mots-clés : signaux de vibration; extraction des caractéristiques; reconnaissance de l’état; moyen de dé-
composition locale; identification basée sur les moindres carrés par une machine à vecteur de support.
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1. INTRODUCTION

When mechanical fault occurs, vibration signal is a carrier of fault information, so its fault analysis is the
first choice to solve the problem of fault. Fault diagnosis usually includes characteristic signal extraction
and state identification. Therefore, to improve work efficiency, accurately and effectively conducted state
recognition can ensure the safe operation of machinery. Vibration signals often exhibit non-stationary char-
acteristics. Obviously, traditional methods have some limitations on the signal processing due to the impact
of noise [1]. Local Mean Decomposition (LMD) as a kind of adaptive non-stationary signal processing
method has been widely applied in the field of fault diagnosis. Academics have proposed LMD energy
operator demodulation to extract the fault feature [2], the combination of LMD and envelope spectrum anal-
ysis [3], LMD-FCM clustering analysis [4], LMD time-frequency analysis method is applied to fault feature
extraction [5]. These studies have involved only mechanical fault feature extraction, failed to monitor the
fault category. Using the appropriate classifier accurately identify the fault is the key to fault diagnosis.

LMD made use of decomposing signal, however it will be affected by the endpoint effect. The envelope
cannot get close near the endpoint leading to increase the LMD decomposition layers, and algorithm also
does not convergence, when serious beefed up its border effect, the actual physical meaning of LMD de-
composition lose, which influence the accurate fault diagnosis. Therefore, in order to improve the accuracy
in LMD decomposition of vibration signal and solve unpredictable movements of the signals at the end-
points appear, the waveform match is used to predict the endpoint value, using linear interpolation to solve
moving average smoothing. The simulation of the measured signals shows that the improved local mean
decomposition can accurately and effectively extract the fault.

Least Squares Support Vector Machine (LSSVM) has been wide applied as the low training sample re-
quirement [6, 7] to solve the practical problem of the neural network, fuzzy logic and Bayesian network
reasoning method in less training data samples, nonlinear and high dimensions [8]. LSSVM makes use of
square error in the objective function, and changes the inequality constraints into equality constraints on the
basis of SVM [9]. The quadratic optimization problem is transformed into linear equations and training time
and classification accuracy increases [10, 11].

This paper presents a series of production function (PF) components by using LMD, then uses energy
entropy as the input vector of the recognizer. LSSVM accurately identify the fault. In order to reflect
unique advantages of the squares support vector machines in small sample pattern recognition problems, the
paper make comparison to neural networks and support vector machines. Experimental results show that
the proposed method can be successfully applied to mechanical fault diagnosis.

2. ALGORITHM MODEL

2.1. Local Mean Decomposition
Local mean decomposition signal are made up of an envelope signal and a pure frequency modulation(FM)
signal, the single component of the PF obtained by multiplying the decomposition envelope signal and a
pure FM signal, LMD process the next iteration after PF separation, until the balance signal is a monotonic
function, calculate every single component PF’s instantaneous frequency and instantaneous amplitude, the
instantaneous amplitude is the PF corresponding envelope function, instantaneous frequency come from
their corresponding pure frequency modulation function. For any given signal, the basic process is described
by the following decomposition:

1. In the decomposition process of LMD we need to extract the extreme points of the original signal.
Smith [12] believed that this is an endpoint extreme point, and in fact cannot predict the trend signals
at the endpoints. The endpoints may not be extreme points of the signal and then spurious components
will end gradually inward, polluting the entire signal sequence. Therefore we need to obtain the actual
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signal endpoint’s possible changes. In this paper, the waveform matching mirror extension method
can reflect the internal law and extreme size of the signal. Suppose a signal x(t) and take the left
endpoint as example: s(0) is labeled as the first endpoint, s1(t1) is labeled as the first maximum value
and s2(t) is labeled as the first minimum, composing the three points of a waveform. This moves to
the right per 1 unit, each step will appear as a certain waveform. In order to find the most similar
waveform, define the error as

e(t) =
s1(t1)∗ s2(t3)− s2(t2)∗ s1(t4)

s1(t1)− s2(t2)
(1)

After completing all waveform movements, each step will cause an error e(t). Calculate the minimum
error value as matching value of the waveform endpoint and estimate the right endpoints using the
same method. According to this principle, the endpoint value of the signal is obtained.

2. Extract the signal x(t) all local extreme points. Calculate the local mean m11(t) and the envelope
a11(t). Principle is as follows, assuming that all the local extreme value point of the original signal
x(t) is ni j(lM), m = 1,2, . . . ,M, lM represent a total of extreme value point, the subscript i is the
position of PF, foot mark j is the cycle-index. The local mean function mi j(t) and envelope function
ai j(t) are obtained as  mi j(t) =

ni j(lM)+ni j(lM+1)
2

ai j(t) =
|ni j(lM)−ni j(lM+1)|

2

(2)

The local mean function and envelope function is obtained by a line connecting two points and the
moving average smoothing. Smith used mean of local third longest span as a moving average span
[12]. Contrary to Smith, in [13] the authors used the shortest span directly as a moving average through
thousands of studies, if it is the longest span will cause missing details characteristics of the signal,
but the shortest span is not able to successfully terminate the iteration, some small fluctuations cause
an infinite loop, at the same time, it affect the results of the decomposition speed and identification
accuracy of signals. In order to avoid excessive smoothing effect, linear interpolation acquire local
minimum and maximum value of the signal, upper and lower envelope and of the signal and linear
interpolation operation respectively, the new local mean and envelope function is{

m(t) = (Emax(t)+Emin(t))/2

a(t) = |Emax(t)−Emin(t))|/2
(3)

3. The separate local mean function m11(t) from a given signal as

h11(t) = x(t)−m11(t) (4)

The first subscript represents the request of the first signal; the second subscript represents the first
iteration of the first signal.

4. Demodulate the separated signals h11(t) as

s11(t) = h11(t)/a11(t). (5)

In the ideal time, the demodulated s11(t) should be pure FM signal, which meet the local envelope
a12(t) = 1. If the s11(t) does not meet this condition, s11(t) is regarded as a given signal repeating
steps 3) and 4), until s11(t) become pure frequency modulation signal, i.e. −1≤ s11(t)≤ 1, the local
envelope function a1(n+1) satisfy a1(n+1)(t) = 1.
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5. The envelope of signal PF obtained by multiplying all local envelope a(t) = a11(t)a12(t) . . . ,a1n(t) =
Πn

q=1a1q(t). The first single component PF is

PF1(t) = a1(t)s1n(t) (6)

6. A new signal u1(t) separates PF1(t) from x(t) as

u1(t) = x(t)−PF1(t) (7)

7. The signal x(t) is decomposed into k single components PF and a monotonic function uk(t) after k
cycles until uk(t) is a monotonic function through repeating steps 1 to 6 as follows:

x(t) =
k

∑
p=1

PFP(t)+uk(t) (8)

2.2. Least Squares Support Vector Machine
Set the input sample x is n-dimensional vector. The output sample is y and samples are expressed in the form
{(xi,yi)}, i = 1,2, . . . ,n. The nonlinear mapping function can map the input samples in the high dimensional
feature space as

y = f (x,w) = sgn [W T
φ(X)+β ] (9)

Then optimize the objective function as

min
w,βξ

= J(W,β ,ξ ) =
1

W

T
W +

1
2

C
N

∑
i=1

ξ
2
i (10)

where w is the weight, β the offset vector, C is the regularization factor, xii is the error vector. The constraints
are given as

yi[W T
φ(xi)+β ] = 1−ξi, i = 1,2, . . . ,n (11)

To transform the constrained optimization problem into an unconstrained optimization problem, we intro-
duce the Lagrange multiplier αi:

L(W,β ,ξi;αi) = J(W,ξi)−
n

∑
i=1

αi{yi[W T
φ(ξi)+β ]−1+ξi} (12)

According to Karush–Kuhn–Tucker (KKT) conditions

∂L
∂W = 0→W = ∑

N
i=1 αiyiφ(xi)

∂L
∂β

= 0→ ∑
N
i=1 αiyi = 0

∂L
∂ξi

= 0→ αi =Cξi

∂L
∂αi

= 0→ yi[W T φ(xi)+β ]−1+ξi = 0

(13)

Remove the error vector ξi and weight vector w[
0 yT

y ZZT +C−1I

][
β

ᾱ

]
=

[
0

1N

]
. (14)

Z = [φ(x1), . . . ,φ(xN)]
T ,1N = [1, . . . ,1]T , ξ̄ = [ξ1, . . . ,ξN ]

T , ᾱ = [α1, . . . ,αN ]
T . ZZT Product operation is

instead of kernel function k(xi,yi) that meets the conditions of Mercer. The classification decision function
is

f (x) = sgn

[
N

∑
i=1

αiyiK(xi,yi)+β

]
(15)
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Fig. 1. LMD decompose waveforms.
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Table 1. The energy of the bearing fault.
Energy

Fault PF1 PF2 PF3
Outer fault 0.4971 0.0915 0.0022

0.4622 0.0901 0.0047
0.4839 0.0958 0.0082
0.4601 0.0948 0.0087
0.4789 0.0939 0.0064

Inner fault 0.3272 0.0995 0.0021
0.3626 0.0931 0.0017
0.3803 0.0956 0.0032
0.3301 0.0918 0.0007
0.3769 0.0919 0.0004

Ball fault 0.1098 0.0105 0.0096
0.1025 0.0112 0.0072
0.1034 0.0153 0.0022
0.0813 0.0185 0.0075
0.0898 0.0192 0.0046

3. SIMULATIONS AND DISCUSSION

In this paper we select 6205-2RSJEM SKF deep groove ball bearing drive end bearing of Washington Case
Western Reserve University for analysis. The experimental platform consist of 2 horsepower motor (1 HP =
746 W), torque sensors, power meter and electronic control equipment. The bearing is arranged 0.007 inch
bearing failure using EDM. The sampling frequency of the signal is 12 kHz, the sampling points is 1024,
the engine speed 1797 r/min. Select 100 groups of data for each of three states under the fault of the bearing
inner race, outer race fault, ball bearing for experimental analysis. The random 70 groups of data under the
three states is the training sample, the rest of each 30 groups of data as test samples among them.

3.1. LMD Decomposition Results
Figures 1(a–c) respectively represent waveforms of the outer fault, ball bearing fault and inner fault by local
mean decomposition. When the bearing in the event of fault, the energy concentrated in the high frequency
part, so select the first three components of the proposed energy PF value as an input sample.

3.2. The Energy of PF
This paper uses the energy characteristics of PF components as feature vectors, enter LSSVM identify the
fault. The experimental procedure is as follows:

1. The collected vibration signal is LMD decomposed into different numbers of PF component. Select
the PF component that contains the main fault information.

2. Calculate the energy of major component of PF Ei.

Ei =
∫

∞

−∞

|Ci(t)|2 dt (16)

3. The energy entropy Obtained 2 composes of feature vector T and feature vector normalization.

T ′ = [E1/E,E2/E, . . . ,En/E] (17)
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Fig. 2. The Receiver Operating Characteristic (ROC) curve.

E =

(
n

∑
i=1
|Ei|2

)1/2

(18)

4. Enter the training and testing samples into LSSVM using the kernel function RBF to identify faults.

Calculate the energy vector as an input sample in bearing three states. Follow the steps described to get
the fault input vector. Table 1 lists the actual output results of the 15 groups of data.

3.3. Fault Identification Results
The energy vector was randomly selected 70 sets of data for each fault, compare to the normal data re-
spectively, input LSSVM the three types of fault data. In order to get higher recognition accuracy, using
L-a fold and the grid search method to optimize the regularization parameter c and kernel parameter φ , the
three curves show that LSSVM recognizer has good classification performance as Figs. 2(a–c). After two
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Table 2. Bearing fault classification performance comparison of three models.
Network model Fault state Test samples Correct number Accuracy Comprehensive accuracy
BP inner 30 22 73.33% 67.78%

outer 30 19 63.33%
ball 30 20 66.67%

SVM inner 30 25 83.33% 75.55%
outer 30 22 73.33%
ball 30 21 70.00%

LSSVM inner 30 26 86.67% 84.45%
outer 30 26 86.67%
ball 30 24 80.00%

iterations, the initial value of inner ring fault is c = 0.00816101, φ = 0.409761, c = 0.19655, φ = 4.1045 is
the new parameter. Ball fault from c = 0.00432003,φ = 0.450535 to c = 1.25908, φ = 20.1365. For outer
ring fault c = 0.32752, φ = 0.15714 only two iterations, c = 10.0382, φ = 53.044.

In order to reflect the superiority of the proposed algorithm, the PF component input BP neural network,
standard support vector machines to identify the fault, performance comparison shown in Table 2. Select
the number of samples tested is less than the training sample, using the same input samples were entered in
the model, we know LSSVM can effectively identify faults, each state recognition accuracy is higher than
other two kinds of recognizer, the recognition accuracy achieve 84.45%.

4. CONCLUSIONS

In this paper we combine the energy entropy of production function component by decomposed in local
mean with least squares support vector for mechanical fault recognition to solve the low BP neural network
generalization capabilities and standard SVM training while increasing the number of samples time slows
down, least squares support vector machines can more accurately identify the fault. The article introduces
waveform matching to solve the original features of signals at the endpoints, using linear interpolation to get
local mean and envelope function. Experimental results show that the algorithm provided can be used in the
identification of mechanical fault, thus providing the basis for the ability to guarantee the normal operation
of machinery, real-time monitoring of machinery running.
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